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The structure of the expectation values of retarded multiple commutators (r functions) is analyzed in 
terms of the number of particles in the decomposition of absorptive parts. As to the one-particle structure, it 
is found that an r function is a sum of a finite number of terms, each of them except one (that one being 
called one-particle irreducible) being in momentum space a product of one-particle irreducible factors, 
linked by one-particle propagation functions. As to the two-particle structure, it is found that a one-particle 
irreducible function is the solution of an inhomogeneous Bethe-Salpeter equation, whose kernel and inhomo­
geneous term both are two-particle irreducible functions. This structure, which could be generalized to 
higher particle numbers, closely resembles perturbation theory but is here derived from locality and the 
asymptotic condition alone, by converting the nonlinear system of integral equations for r functions stepwise 
into one in which neither one- or two-particle reducible functions, nor one- or two-particle intermediate states 
appear. The implication of such structure analysis for an interpretation of perturbation theory, improve­
ments of present methods to derive analytic properties of scattering amplitudes, and a formalism with 
unstable particles are discussed, and the strength of singularities of various functions investigated. 

INTRODUCTION 

AXIOMATIC quantum field theory consists in 
studying the consequences for observable quanti­

ties of locality, which means that the commutator (or 
anticommutator) of any two local quantities, like field 
operators, should vanish at spacelike distances. It is well 
known that the most convenient objects to analyze are 
the vacuum expectation values of certain infinite sets of 
operator products: unordered products, giving rise to 
w functions!; time-ordered products, giving rise to T 

functions2 ; and retarded multiple commutators, giving 
rise to r functions. 3 

The axioms of the theory, notably relativistic in­
variance, locality, and the existence of discrete eigen­
states of the energy-momentum-squared operator, imply 
certain properties of those functions. Firstly, there are 
properties expressible for each function separately, 

* On leave of absence from Max-Planck-Institut fiir Physik, 
Miinchen, Germany. Present address: Physics Department, Stan­
ford University, Stanford, California. 

1 A. S. Wightman, Phys. Rev. 101, 860 (1956). 
2 See e.g., H. Lehmann, K. Symanzik, and W. Zimmermann, 

Nuovo cimento 1, 205 (1955). 
3 See e.g., H. Lehmann, K. Symanzik, and W. Zimmermann, 

Nuovo cimento 6, 319 (1957). 

mainly deduced from relativistic invariance and locality, 
and secondly, properties that relate all those functions 
together. Of this latter type are the positive definiteness 
condition for w functions! and the infinite systems of 
coupled nonlinear integral equations for r2 and r func­
tions,4 where specific properties of the state space of the 
theory are explicitly used. 

A great deal of work has recently been done on the 
first-mentioned "linear" properties. However, it has 
been shown by Jost5 that the linear conditions are not 
sufficient to establish analyticity of the meson-nucleon 
vertex function in the cut energy-plane. On the other 
hand, it is known that the nonlinear conditions are im­
portant in proofs of dispersion relations for scattering 
amplitudes. Thus, it seems to be desirable to find out 
generally what kind of properties of the invariant func­
tions these conditions imply, a 'question that has re­
ceived comparatively little attention. 

It will be shown that the nonlinear conditions de­
termine the many-particle structure of the functions in 

4 V. Glaser, H. Lehmann, and W. Zimmermann, Nuovo cimento 
6, 1122 (1957); K. Nishijima, Progr. Theoret. Phys. 17, 765 
(1957). 

5 R, Jost, Helv. Phys, Acta 31, 263 (1,958). 
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question. Here the r functions are the most convenient 
ones since their nonlinear system of integral equations 
is simplest. This is because, in contrast to T functions, 
for r functions the locality condition is a linear one: the 
r functions are to be invariant retarded functions. The 
nonlinear conditions merely express the absorptive part 
of. an r function as a sum of bilinear terms arising from 
various intermediate states, the number of particles in 
those states usually rangiI1g from one to infinity. Ac­
cording to this decomposition of the absorptive parts, 
the r functions have several types of singularities in 
momentum space: delta-function-like ones from one­
particle intermediate states and discontinuities of the 
derivatives at the thresholds of many-particle con­
tributions. 

To understand the structure of r functions in view of 
these singularities, one starts best from perturbation 
theory. This is because the renormalized perturbation 
theoretical expansion of the r functions is a formal solu- . 
tion of the axiomatic scheme and, actually, the only 
form of a solution we know at present. Moreover, if one 
sets out with the aim of finding a formal solution of the 
scheme as a power series expansion in a perturbation 
parameter (or set of parameters) one is uniquely led6 to 
the renormalized perturbation theoretical expansions 
compatible with the assumed types of stable particles. 
Therefore we start, short of something better, from per­
turbation theory and try to find out those of its features 
that render it a solution, though a formal one, of the 
nonlinear system as particularized in the foregoing. 

A perturbation theoretical contribution to an r func­
tion is described by a double graph.7 The skeleton of 
such a graph is the same as that of a Feynman graph. 
However, there is one distinguished vertex (the latest 
one) and the lines in the graph do not stand for I1F but 
for I1Ret and 111 functions. In such a graph one can per­
form partial summations, as is well known for Feynman 
graphs as well as for the graphs of the nuclear many­
body problem. What we call structure of a graph is the 
circumstance that there might be one line, or pair of 
lines, that is the only connection between otherwise dis­
connected parts of that graph, both parts in themselves 
having again the skeleton of a most general double 
graph. There may be, of course, several graph parts that 
are connected with one another by such simple links. 

If no restriction is imposed on the number of legs a 
vertex in the graph may have and, of course, no re­
striction on the number of vertices, the structure just 
described is the most general property that can be 
abstracted from perturbation theory (apart from the 
permissible singularities of r functions, which will be 
discussed later). This structure is exhibited in closed 
form by requiring the r functions to be solutions of 
inhomogeneous Bethe-Salpeter equations, where both 

I R. Haag, Kgl. Danske Videnskab. Selskab, Mat. fys. Medd. 
29, 12 (1955). The question of renormalization was cleared up in 
the paper cited in footnote 2. 

7 F. J. Dyson, Phys. Rev. 82, 428 (1951). 

the kernels and the inhomogeneous terms are irreducible 
in the sense that their absorptive parts do not have 
contributions from one, or two, particle intermediate 
states. This structure is verified by inserting it into the 
nonlinear system of integral equations, whereupon all 
one- and two-particle singularities (or reducibilities) 
drop out and the properties of kernels and inhomogene­
ous terms just mentioned are manifested.7

& The key to 
this phenomenon is the fact explained before, namely 
that the perturbation theoretical solution, whose struc­
ture was taken as a guide, is a formal solution of the 
nonlinear system. Actually, we shall show that the 
ansatz chosen by us does not imply a loss of generality 
at the beginning. 

The implication of these findings is two-fold. Firstly, 
they lead to a new interpretation of perturbation theory 
as a degenerate form of structure .analysis, since irre­
ducibility of vertices, or absence of intermediate states 
of low mass, means decreased extension in space-time. 
Secondly, they can be exploited to enlarge the analyticity 
region of scattering amplitudes, or to prove such 
analyticity for up to now excluded mass ratios, or pos­
sibly, to find new analytic properties for which the 
nonlinear conditions are crucial. 

One feature of renormalizable perturbation theory not 
taken into account is the estimate of the strength of 
singularities, or growth at infinity in momentum space, 
of each single term of the expansion. In accordance with 
our earlier admitting "unrenormalizable" vertices, we 
believe perturbation theory not to be indicative here, 
and actually to be too generous, as is already known for 
special cases,8 and we shall collect arguments for that 
opinion. Further study of the consistency of the suitably 
reduced nonlinear system should give an answer to this 
question as well to others that arise from the, in com­
parison with perturbation theory, here widened view­
point. 

In the first part generalized retarded functions are 
introduced as formal tools for later use. 

In the second part the one-particle singularities of 
retarded functions are studied in some detail, mainly to 
display the method used in the more complicated analy­
s~s of two-particle singularities in the third part, details 
of which are deferred to an appendix. 

In the fourth part these results are generalized to 
higher singularities, and their implications for an in­
terpretation of perturbation theory are discussed. 

The strength of singularities of propagation and 
vertex functions is discussed in the fifth part, with an 
appendix containing calculational details. 

The final part gives an outlook on possible applica­
tions of the formalism to the specific problem of analytic 
continuation of scattering amplitudes. These applica-

7. At this point our proof is not yet complete, though a very 
indicative result is obtained. 

a H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo 
cimento 2, 425 (1955). 
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tions will be dealt with further in a later paper. Also it is 
sho~n what meaning the concept, or use, of unstable 
particles may have in the present scheme. 

1. GENERALIZED RETARDED FUNCTIONS 

. We shall dis~u.ss in nearly all of the following a theory 
With one hermitIan scalar field A (x), obeying 

[A (x),A (y)] = 0 if (X_y)2<0, (1) 

and o~e kind of neutral spinless particles only. The 
extensIOn of all results to more realistic cases is straight­
forward. 

A convenient tool to handle infinite sets of functions 
or operators are generating functionals. They are gener­
ally not supposed to exist in any other than a formal 
sense, provided each function or operator of that infinite 
set exists. The generating functional of time ordered 
operator products 

r(Xl" .xn)= L 0(XI-X2)" ·O(Xn_l- Xn) 
perm 

is the operator 

'J'{J} = 1 + t in f· .. fdX1' .. dx"T(XI' .. Xn) 
n~l n ~ 

XJ(Xj)" 'J(x,,), (3) 

where J(x) is a source function that plays an algebraic 
role only.9 We shall abbreviate 

'T{I}= '1', 
V (Xl)' .. V(xn ) 

the J dependence being understood. 
The use of 'J' presupposes that the products (2) are 

well defined. As we shall see, it suffices to this end that 
the vacuum expectation values be well defined. We 
defer the discussion of this restriction to a later section 
and will be satisfied for the moment with the deliberate 
restriction to theories where the singularities of vacuum 
expectation values of operator products are not worse 
than in each perturbation theoretical order of renor­
malizable theories, which implies the existence of the 
vacuum expectation values of time ordered products 
and retarded commutators as tempered distributions for 
which moreover all operations carried out in this section 
are well defined and orders of integrations can be freely 
interchanged. A thorough discussion of this latter point 
has recently been given by Zimmermann.!O Note added 

9 The functional 'nil, being unitary, might have a more than 
formal meaning. If we do not, in all of the following, set J = 0 after 
a finite number of differentiations, but keep it finite, we obtain 
reducible and irreducible Green's functions in the presence of an 
external source, like an external current in quantum electro­
dynamics; see footnote 18a. Schwinger (footnote 18) introduced 
that functional this way. 

10 ":N. Zimmermann, Nuovo cimento 10, 597 (1958) and forth­
commg paper. 

in prooJ.-(To Sec. 1.) The solution presented in Eq. 
(25) holds formally (i.e., in the power series expansion 
and apart from ultraviolet difficulties, which do not 
show up in the formal manipulations), if the interaction 
is switched off at large positive and negative times, 
whereby relativistic invariance in the large is destroyed . 
The Green's functions with J=I=O, however, correspond 
to a situation where the term J(x)A (x), with A (x) as 
always the renormalized field, is added to the La­
grangian density. Thus, existence of the usual Green's 
functions with J=O (in the sense of no need of subtrac­
tions, d. the beginning of Sec. 1) can be interpretated as 
"measurability" of the renormalized field even when 
the amplitude renormalization is infinite.-From the c 
number property of the commutator [Ain(X),Ain(Y)] it 
follows that integrations of the type Eqs. (13), (14), or 
(17) and of the type (15) can be interchanged among 
themselves, but not with each other. (Integrations of 
the type (16) can be interchanged with both other 
types.) The noninterchangeability disappears for "re­
duced" functionals that are obtained from the original 
ones in an analogous way as cp functions were obtained 
from T functions in the reference of footnote 2 and does 
not affect the later calculations. (To Sec. 2) Eq. (48) 
is not a consequence of (47), and 1/!(il,fJ) =0 is not the 
only solution of (59), if llRet'(p) has zeros, because here 
for the process of amputation the retarded boundary 
condition, which made the amputation unique till 
here, is no longer available. The additional terms 
~(P)=i7rE(po)L cxiJ(xx-p2), which give rise to the 
CDD zeros as seen in Eq. (102), cannot be thought to 
be contained in the term written in Eq. (49) because 
delta functions are not absolute squares. NonCDD 
zeros are excluded if the restriction mentioned at the 
beginning of Sec. 1 is invoked, as follows from the result 
of Appendix B. (To Sec. 3.) The phenomenon explained 
in the foregoing note is expected to show up also here 
because of the distinct analogy between the one- and 
the two-particle structure analysis. This means that 
though the inverse I-F/ of l+F' in Eq. (73) is still 
unique provided the retarded boundary condition is 
applicable it can be expected that nontrivial solutions 
X', V', Zi=l=O of Eqs. (80) ff will remain, analogous to 
CDD R functions. Of course, this does not imply that 
an ambiguity will necessarily persist if the analysis is 
carried further.-The author is indebted to Dr. S. 
Mandelstam for having pointed out to him the per­
turbation theoretical example of an unstable particle, 
which suggests Xi, Vi, Zi=l=O. (To Sec. 4.) The remarks 
presented under A on the relation of structure analysis 
to a theory with field equations, like quantum electro­
dynamics, stand amplification. If there is a subtraction 
permitted for the vertex, a nonvanishing dispersive part 
(namely, a constant) is compatible with a vanishing 
absorptive part of the vertex that is two-particle irre­
ducible with respect to an external coordinate. If no 
subtraction is made, the dispersive part would also 
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vanish, which leads to vanishing results throughout. 
(The dispensability of a subtraction follows similarly as 
in Sec. 5 for the original vertex, because the Born ap­
proximation is the same. These considerations do not 
apply to a superrenormalizable theory where in general 
the Born approximation of the vertex does not vanish.) 

It is well known that because of (1) and the present 
remarks, '1" transforms relativisticallyll according to12 

U (a,A) 'l"{J} U (a,A)-l = 'l"{ l'}, 

where l'(x)=l(a+Ax). Since 'l" can be written 

it is unitary: 

(4) 

(5) 

We now introduce the functional of two source 
functions 

(6) 

which generates an infinite set of operator products de­
pending on two sets of coordinates, 

R(XI' . 'Xm,Yl" 'Yn) 

om+n 
_ _ m{i,l} I j=J=O. (7) 

8J (Xl)' . ·OJ (Xm)OJ (Yl)' .. OJ(Yn) 

We shall use the abbreviations, 

fjm+n 
_ _ m{i,l} 

OJ (Xl)' . ·OJ (Xm)Ol(Xm+l)' . ·OJ(Xm+n ) 

(8) 

as well as 

Since <R is hermitean13 and transforms in analogy to 
Eq. (4), the products in Eq. (7) are hermitean and their 
vacuum expectation values, 

(R(XI' . 'Xm,yl' . 'Yn»=r(xl' . 'Xm,Yl' . 'Yn), 

are real relativistically invariant functions (distri­
butions). 

From (5) and (6) we find 

(8) 

11 We use standard notations; see e.g., footnote l. 
12 Equations like (4) and following ones mean that upon ex­

pansion of both sides in powers of J the symmetrized coefficients 
of each order on both sides are equal, or that equality holds upon 
functionally differentiating both sides any number of times and 
then setting J identically zero. See, however, footnote 9. 

13 The reInarks in footnote 9 apply to this functional in an 
analogous sense, b~ause of its close relation to 'l"{ J}, at least for 
purely imaginary J and for the derivatives R 1 ••• m • 

which shows that R,. is the generating functional of the 
usual retarded multiple commutators,14 which obeys 

R z.y= i8(x-y)[Rz,Ry]' (9) 

Especially, we have 

[R""Ry]=O if (X-y)2<0 (10) 

as a generalization of (1). From (6) and (8) we find 

R l ... m =2l- m L: 8(Xl-X2)" ·8(Xm-l-Xm ) 
perm 

Thus, for exclusively spacelike distances among the x 
we have 

Therefore, these products are the many-time generaliza­
tion of products introduced by Nishijima.15 ,16 From (9) 
and (11) follows that they vanish unless each Y in (7) is 
timelike advanced with respect to at least one x: 

R:w"xm,y=O unless y<x., "d·· ·m. (12) 

The x, however, are not subject to any restriction, apart 
from that following from Eq. (12). 

From (11) and the well-known reduction formula17 

for retarded commutators, 

where Kz= ()z~azl'+m2, or directly from the asymptotic 
condition and (6), (8) we find 

(13) 

In order to deduce the expansion of <R in normal­
ordered products, we insert the general ansatz, 

where F is a c number functional into (13). This leads to 

f dz~(y-z)Kz[o/fjl(Z)-fj/fjJ'(z)JF{i,J,J'} =0 

14 See footnotes 3, 4. Retarded products were already used by 
G. Kallen and J. C. Polkinghorne. 

16 K. Nishijima, footnote 4. See also K. Baumann, Z. Physik 152, 
448 (1958). • 

16 They are not, however, related to products recently intro­
duced by J. C. Polkinghorne, Proc. Roy. Soc. (London) A247, 557 
(1958), which would be deduced from the generating functional 
'l"+{J}'l"{J +J}'l"+{J}. 

17 W. Zimmermann, Nuovo cimento 10, 597 (1958). For in­
stance, let yo ---> - 00 in (9). In convolutions the Klein-Gordon 
operator K will always stand next to a solution or Green's function 
of the Klein-Gordon equation and operates on the other factor, 
be it to the right or left. 
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provided J' is on the mass shell, and therefore allows to 
replace in the foregoing equation %J'(u) by %J(u). 
Upon identification of F{J,J,O} by taking the vacuum 
expectation value, we obtain the desired expansion 

ffi= :exp[! duA in (u)Kuli/oJ(u) } <ffi). (14) 

We furthermore :tind directly from (6) and the asymp~ 
todc condition, 

and 

and for the boundary term in Eq. (15), 

1 
-{Ain (y),ffi",} = Ain H (y)ffix+ ffi",Ain (+)(y) 
2 

+1 J du.11(y-u)K"ffi x • u• (17) 

Equation (15) is obviously the generalization of the 
usual 

expression for Rxt/.· ., with an even number of first 
indices in terms of lower R'U~w' ••• 

The generalized retarded products with not more than 
n first indices provide simple expressions for the scat­
tering amplitudes for processes with n+ 1 outgoing and 
an arbitrary number of ingoing particles. Namely, from 
(6) and (14) we find 

( -i)n'f+'f1 ... " 

= :exp[f duAin(u)K"%J(u) l 
. (O/{jjl-~li/{jJl)'" (li/oj,,-t/OJn )<ffi) I J=o· 

From this, the matrix element 

(one particle I T(xl' .. x",)! ingoing particles), 

and thus the desired scattering amplitude is immediately 
found. 

We shall later draw conclusions from the structure of 
the perturbation theoretical expansion of ffi{j,J} , which 
we therefore derive here in an entirely formal manner, 
disregarding all questions of existence and renormaliza· 
don terms. Let the field equation be 

KxA (x) = - Hw'[A (x)]. 

(1 Sa) Then Schwinger's functional differential equation18 be­
comes 

From (6) various identities between the generalized 
retarded products can be derived. Keeping in mind the 
retardedness described in (12) we are only interested in 
identities not involving step functions. They are ob­
tained from (6) by repeated differentiation and use of 
(5), (8). We list those relations we shall need later: 

(18) 

(19) 

i i 
+-[R •. z,RIIJ+-[Rz.y,R,,]. (21) 

4 4 

A nonrecursive formula for a general R"'lIz' .. can also be 
derived. Another set of identities is obtained from 

<R{j,J} ffi{ -j,J} = 1 

upon differentiation, which gives an especially simple 

-iK.,'f,,=-HwT -ili/OJ(x)]'l'+J(x)'l'. (22) 

From Eq. (22), the hermitean conjugate equation, 
and Eq. (6) we :tind 

1 i 
K"ffi,,= - (zHw'[%i(x)-zo/OJ(X)] 

+~Hw'[li/oj(X)+t/OJ(x) ])<R+J(X)ffi (23) 

and 

The conversion into integral equations18a could be 

18 J. Schwinger,.Proc. NatL Acad. Sci. 37, 452 (1951). See also 
N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of 
QuanUzed Fields (Interscience Publishers, Inc., New York, 1959), 
p. 424. We shall refer to this book as Band S. 

18a These integral equations lead, upon expansion in powers 
of J a.nd J, to two infinite systems of coupled linear integral 
equations between T functions that stand to double graphs in 
the same relation as the infinite system of integral equations 
for T functions obtained from the integrated form of (22) stands 
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done according to (15) and (16). The formal solution of 
(23), (24) can be found with the help of functional 
Fourier transforms,19 or by insertion of the well-known 
formal solution of (22), 

'T=s+:exp[I dUAin(u)Ku%J(u) l 
.exp ( -if Hw[ -iO/OJ(X)]dX) 

.exp[ -~ f f dYdyIJ(Y)~F(y-yl)J(yl)] 
into (6). The result is 

ffi{j,J} =: exp[I dUAin(u)KuO/OJ(u) 1 
.exp ( - f Hw ,[0/W(x)]0/OJ(x)dx+(22 .3!)-1 

xl Hw"'[0/oj(X)]03/0J (X)3dX-+ ... ) 

.exp[l f f dydzj(Y)~l(Y-Z)j(z) 
+ f fdYdzj(Y)~Ret(y-z)J(z)l (25) 

which can also directly be checked to be a solution of 
(23), (24). The structure implied by (25) will later be 
investigated. For the moment we only remark that 
expanding (25) gives rise to the "double graphs" 
described by Dyson.20 •21 

As remarked in the introduction, R., as found from 
(25) is also a formal solution of the basic equation (9) 

to Feynman graphs. The equations are the covariant form 
of the system of coupled integral equations found by W. Zimmer­
mann, Nuovo cimento 11, 577 (1954). The advanced func­
tional ~{J-(i/2)J}<]'+{J+(i/2)J} also satisfies (23), (24), 
but obeys different boundary conditions. The role of J as a 
source is seen from (8), (22), (15a), which give R.=A iU(X) 
+fdu4Ret(X-U)[ -H .. '(Ru)+J(u)]. 

U See e.g., Band S, p. 484 . 
.. F. J. Dyson, footnote 7. See also C. N. Yang and D. Feldman, 

Phys. Rev. 79, 972 (1950) and G. Kallen, Arkiv Fysik 2, 371 
(1950). 

I1lf (25) is expanded, it leads to graphs with vertices that are 
connected by any odd number of advanced lines to later vertices, 
and not oDly by one such line as in Dyson's description. This is 
because of the fact that in (25) tht! i4+ and -i4- lines arising in 
thCl Heisenberg representation approach have been split into 41 
and 4 lines, and the latter lines. been absorbed among the 4Ret 
lines, taking into account all possible distributions of lines on a 
given skeleton. The simplest example is provided by two parallel 
contraction lines between two points: i4+·i4++( -i4-)' (-i4-) 
_:Z-I4a '41-:Z-14' 4-:Z-141' 41-2-14aet'4Bet-2-14Av' 4Av. Note 
also (11). 

as is not difficult to check. Moreover, the structure of 
the renormalized perturbation theoretical solution, 
which is the unique solution of (9) in the precise pertur­
bation theoretical sense, is the same as that derivable 
from (25) if H", is properly chosen and self energies and 
vertex parts are summed up. 

2. ONE-PARTICLE STRUCTURE 

The one-particle singularities of Feynman amplitudes 
have recently been investigated by Zimmermann.22 He 
found that on the basis of locality and the asymptotic 
condition alone, these singularities can be proved to be 
those one infers from a generjil Feynman graph. 

We first derive a similar result for,. functions, closely 
following Zimmermann's method. 

Define 

According to Zimmermann,23 the Fourier transform of 
this operator is proportional to that of the operator 
Aout(x). Because of the generating functional (8) of 
retarded commutators we have by partial integration, 

and 

+----­
OJ(Zl)" ·OJ(z.) 

X ['T+{J}Rout (x; 1'/1' .. 1)r)'T{J} ] I J-O (27) 

R(x, X+1)l' . 'X+1)rZ1' .. z.) 

= I dx' ~Ret(x-x')Kx,R(x', x' +1)1' •• z.). (28) 

With the definition 

I dxe'p,,'Rout(X; 1)1' . '1)r) 

== (21r) 10 (p2- m2)Rout(p ; 1)1' • '1)r), 

we obtain for the Fourier transforms of (27) and (28), 

21 W. Zimmermann, Nuovo cimento 13, 503 (1959). 
!II W. Zi=ermann, Nuovo cimento 10, 567 (1958), where a 

proof is given for time-ordered products. By using the results of 
R. Haag, Phys. Rev. 112, 669 (1958), however, the proof can be 
extended to R products. 
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R(p; '1'/1" ''I'/r,Zl'' 'Z.) 

= [(P-iE)2-m2jl[(p2-m2)RCp; 1)1" ""rh" 'Z.)J 

0' + (21!' )!5 (p2_ m2)---­
llJ(Zl) , , ,oJ(Z.) 

X ['l'+{ J}Rout(p; '1'/1' , '7]r) 'l'{J}] I J-O 

= [(P+iE)L m2]-I[(pL m2)R(p; '1'/1' , '7]r,ZI' , 'Z.)]. 

In the difference 

5' 
= (21!')t5(pLm2)----­

llJ(ZI) , , ,llJ(z.) 

X ['l'+{J}Rout(p ; 7]1' , '7]r) 'l'{J}] I J-O, 

we insert, because of the above remark, 

o(P- m2)Rout(P; 7]1' , ''I'/r) 
= 5(P- m2)Rout(P)C(p; '1'/1' , 'fir), 

where C(p; '1/1' , ''l/r) is a c number, such that 

o' 
= (21!')lo(pL m2)----­

llJ (ZI) , , ,llJ (z,) 

X ['l'+{J}RoutCp) 'l'{J} J I J-oCCp; fll' , '7]r), 

The omission of '1/1' , ''l/r permits, because of C(p) = 1, to 
eliminate Rout, This gives 

5(pL m2)[(p-m2)R(p; '1/1" ''I'/r,Zj'' 'z,)] 
=0(p-m2)[(p-m2)R(p; Zj' , 'z.)]C(p; flj' , 'fir)' 

In order to eliminate C(pi '1/1" ''l/r), we keep only ZI=O 
and take the vacuum expectation value, Because of 

if p2=m2 we finally obtain24 

o(p-m2)[(p2-m2)R(pj '1/1" ''I'/r,Zj' "Z.)] 
= -o(p2_m2)[(p2_ m2)R(pj '1/1" '7]r,O)J 

X [(p2- m2)R(p j Zj' "Z.)], (29) 

where also an integration over 'l/j' , ''l/r should be per­
formed, 

For the following, we wish to generalize (29), re­
turning to functionals, To this end it is convenient to 
derive from (25) a one-particle-structure ansatz which 
conforms with (29) for each possible singularity, 

Consider the most general double graph20 in the 

"Equation (29) is analogous to Eq, (35) of footnote 22; K, 
Nishijima, footnote 4, and K, Baumann, footnote 15, give in the 
last factor on the right-hand side of (29) the time-ordered product, 

perturbation expansion of (25), Since the skeleton is the 
same as that of a Feynman graph, all interior and end 
lines will be self-energy corrected, and thus actually be 
the function, 

r(x,y) = ARet' (x- y) = ifJ(x- y)([A (x),A (y)]> 

for retarded and 

tAl' (x-y)=t({A (x) ,A (y)}) 

for contraction lines, These latter lines, however, will 
not appear explicitly in the following, 

Next, note that the expansion of the functional (R,,) is 

(R,,)= f dzARet'(X-z)J(z)+(R/), (30) 

where (R x') contains the second and higher powers of J 
and will, due to (l5a) and the remarks just made, begin 
with a ARet'-function at x, We shall find it sometimes 
useful to display it by writing 

(R,,') = f dzARet'(X-z)(R/), 

where barring a coordinate means "amputation" by 
division in momentum space,25 Similarly, from (16) and 
the foregoing remarks, we infer the presence of jj.Av' lines 
at the coordinates at which, according to (7), J is 
attached, Altogether we have 

00 1 -
(Rx') = E2 n! f'" J dzduj' , ,dundvj' "dvnARet'eX-Z) 

X (R(f,t'll' , 'Un»' ARet' (Ul-Vj) 

and correspondingly, 

(Ri,r .. ,,,') 

= (R(i,Yj' , 'Ym» 

XJ(Vl)' , ,jj.Ret' (Un - v,,)J(v,,), 

+ i: ~ f' "fdVI ' "dvn(R(i,Yj" 'YmUj' . 'Un» 
n~l n! 

Xjj.Ret' (Ul-Vl)J(Vl) ' , ,AR.t' (Un -v,,)J(v,,), (31) 

We shall now use a graphical notation where the last 
functional is represented by a circle, a smaller circle on 
the periphery denoting the (amputated) first coordinate, 
and the function jj.Ret' is represented by a barred double 
line, 

From (25) one easily sees that a line that connects 
two otherwise separated graph parts must be a retarded 
or, more precisely, jj.Ret' line, and that both those parts 
are again the most general double graphs with the re-

n The question of zeros of .5:R.,' (P) will be discussed in detail in 
Sec, 5 and will be seen to present no difficulty here, 
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FIG. 1. General one-particle structure of (R x '), Eq. (33). 

maining external lines and the new external line at the 
bridge. This fact, well known for Feynman graphs, is 
due to the exponential structure of (25). However, if all 
integrations should be over all space-time, the later 
graph part should be one-particle irreducible between 
the latest coordinate x and the bridge to avoid double 
counting, but will in general have one-particle bridges 
to other graph parts. Thus the general structure we 
conjecture to be correct is the generalization of (31) 
shown in Fig. 1 which, as explained in the foregoing, 
stands for the functional equation, 

Q() 1 
(Rx')=(Rxi)+ L -(Rx,I ... ni)(R/)·· . (Rn') (32) 

n~l n! 

where integration over repeated coordinates is implied, 
The functional (Rxi), whose further indices indicate 
functional derivatives as usual, is supposed to be one­
particle irreducible between any two coordinates being 
displayed as well as those being set free by further 
functional differentiation, The precise meaning of this 
condition will soon become clear, 

It is important to note that (32) does not imply a loss 
of generality, because it can be solved for (Rxi) by 
iteration of 

Q() (_1)n 
(Rxi)=(Rx')+ L --(Rx,I ... n')(Rli) .. '(Rni), (33) 

n~l n! 

obtained from (32), or 

(Rx'{ J})= (Rxi{ J}) 
with 

lex) =J(x)+(Rx'{J})= (Rx{J}) 
= J (X)+(Rxi{ J}), (34) 

To any finite order m of J, the sums and iterative 
solution of (33) break off. Thus, no convergence prob-

. lems are here involved,26 and (33) defines the functional 
(Rxi) explicitly, The same breakoff takes place in (32), 
With (33) it is not difficult to show that (Rxi) is not one­
particle singular, in the sense of (29), with respect to any 
separation of its coordinates into two groups. 

.! • ! FIG, 2, Decomposition of (R x, y), Lf. = ... + ¥ Eq. (37), 

26 Such problems could arise if the functionals were used non­
formally, see footnotes 9 and 13.-The author is indebted to Dr. 
H, Araki for having pointed out that an earlier form of (33), (34) 
was incorrect, 

Equations (33) and (34) display that (Rxi) is again 
a real invariant retarded functional in the sense of (12), 
It is this convenient separation of retardedness (12) and 
completeness (18) that renders the retarded functions 
suitable for our analysis. As we shall see, in the two­
particle structure analysis (12) has also to be used at 
later steps of the argument. 

We now use the abbreviation, 

(Rx,u •... i.)=(Rx,u .... i) 

00 1 
+ L -(Rx,I ... ;;u .... i)(R/)· .. (Rn'). (35) 

n~l n! 

Therefore, the indices of (Rxi.) do not mean functional 
derivatives. Instead, we have 

(36) 

where we use 

(Rx,y)= .1Re / (x- y) +(Rx,v'), (37) 

which follows from (30) and is depicted in Fig. 2, a 

FIG. 3. Analysis of (Rx, u'), 
Eqs. (39) and (41). 

square denoting the amputated unprimed functional. 
Thus, we find from (32) 

(38) 
and with (36) 

(R x, ,/)= (Rx,,, i8)+(R x,Ii8)(R1, u')= (R x ,Ii8)(R1 , ,.), (39) 

(Rx,,,v'l= (Rx,u.) = (Rx,I'2is)(Rl,u)(R2,v) 
+(R x ,Iis)(R1 ,1tvl, (40) 

etc. The iteration of (39) 

Q() 

(R x,1t')=(Rx,,,is)+ L (Rx,Ii8)(Rl,2i')" ·(Rn,,,is) 
n~l 

can be resummed to give 

(Rx, u')= (Rx, u i8)+(R x,I')(R1 , u i8)= (Rx,I)(R1 , u is), (41) 

which proves (41) since the sum breaks off in any finite 
order of J. Multiplication of (40) by (Ry,x) and use of 
(41), (37) give 

(R x, uv) = (R z, y)(RII,Ui8)(Rl,u)(R2,.). (42) 

Equations (39) and (41), and (40) and (42) are depicted 
in Figs. 3 and 4. Though these figures closely resemble 
those of ordinary graphs, they actually show "meta­
graphs," because by functional differentiation and use 
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of (36) an arbitrary number of additional externallines27 

can be attached to them. 
Let us insert (14) into (18). This gives 

:exp[J duAin(u)Ku%J(u) l «Rx.y)-(Ry.,,») 

= :exp[I dUAin(u)Kuo/OJ(u)} 

. {exp[IIdU'du,,-o-Ku,iA+(U'-U") 
oJ'(u') 

XK u " -e du'du"---0] [II ° 
oJ" (u") xp OJ' (u') 

XKu,iA+(U"-u')K u" 0 ]} 
OJ" (u") 

·i(Rx{J+J'})(Ry{J+J"}) I J'-J"-O. (43) 

What counts for the "structure" of the right-hand side 
is not which intermediate states did contribute in (18), 

= 

FIG. 4. Analysis of (R I • uv'), Eq. (40). 

but how many contraction lines connect the two factor 
functionals, which are connected within themselves. It 
is one connecting line, then a iA-line, which in general 
gives rise to several separate one-particle singularities 
(singularities on mass hyperboloids) in momentum 
space, their position depending on where the external 
particles, represented by fdujaKufJ/OJ(u), are at­
tached, rather than a one-particle intermediate state; 
this latter being the case only for the vacuum expecta­
tion value of (43) with J=O. In addition, there will be 
the singularities studied before of the factors in (43) of 
the retarded or advanced type, respectively, lying in 
momentum space on the same hyperboloids28 as the 
intermediate states singularities just described. Since 
both sides of (43) are equal, these singularities must 
altogether cancel leaving a remainder that is finite in the 
first place and must be shown to vanish in the next step; 
this means, is open for the many-particle structure 
analysis of later sections. 

27 Because of this capacity, "metagraphs" represent not only the 
vacuum expectation value, but, with (14), all matrix elements of 
an operator product. Note that since (Rx. y') I J_o=(R x. yi) I J_O 

=(R x. /8) I J_o=O, Fig. 3 becomes a triviality in lowest order of J. 
28 Of course, they may occasionally be ruled out because of 

energy-momentum conservation. 

Clearly, in order to satisfy (43) it is sufficient to do so 
for the vacuum expectation value, 

(Rx.y)-(Ry.x)=i([Rx,Ry]). (44) 

From (37) and (14) we find 

Upon use of (13), (44) takes the form29 

(R z. ;;:')ARet" (y- u) - ARet" (x- u)(Ry. ;;:') 
-A"(X-y) =i([Rx',Ry']), (45) 

where the abbreviations 

have been used. With (39) we rewrite (45) as follows: 

(Rz.;;:is)ARet" (y-u) +(Rx.ris)(RI. ;;:')ARet" (y- u) 

- ARet" (x- u)(R y. ;;:is) - ARet" (x- U)(R2. ;;:')(R y.'1.i8) 

- A" (x- y) = i([Rz',Ry']) = i([Rx',Ry']i) 

+i(Rz.ris)([RI',Ry'])+i([R/,RI'])(Ry.ris) 

- i(Rz.ris>([RI',R2'])(Ry.2i8) 

-(Rz.;;:i8)A(U-v)(Ry.;;i8). (46) 

Here the second equality sign defines i([Rx',R/Ji). The 
terms subtracted out denote in order: all one-particle 
singularities from (Rx), all one-particle singularities 
from (Ry), correction for twice-subtracted terms, one­
particle intermediate state singularity not yet taken 
into account. 

Note that all subtractions, except the last one, also 
contain contributions that are not singular, because 
ARet', that makes up bridges, has also a nonsingular part 
whose treatment is a matter of convention. In addition, 
often at the place where ARet' is singular, the subtracted 
term vanishes because of momentum conservation. 

The definition of one-particle singularities (or re­
ducibilities) used here, which is suggested by perturba­
tion theory, turns out to be the most convenient one, as 
we shall repeatedly see. 

We now replace on the right-hand side of (46) every­
where i([Rr',R y']) etc., by their values given by (45). 
Thereupon, with (39), all one-particle reducibilities· 
drop out, and (46) reduces to 

(R x .;;:i8)ARet' (y- u) - ARet' (x-u)(Ry.;;:i8) 

-A"(X-Y) = i([R,.',Ry']i). (47) 

It is convenient to amputate the ARet'-functions at x 
and y to obtain the simple equation30 

(R il • ii i8)_(R ii •zi8)- A" (x-g) = i([R/,R/}), (48) 

29 Note that on the mass shell.:lRet'-amputation is equivalent to 
application of the Klein-Gord.on operator. 

30 Equation (48) is equivalent to (44) since all one-particle 
reducibilities can be correctly recovered, as is shown by comparing 
(44) and (48) in ascending powers of J. See, however, note added 
in proof. 
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whose zero-order part in J 

-.:l"(x-y)=i([Rt',R,,'})/ J~O (49) 

will be studied in Sec. 5. 
Equation (48) shows that the absorptive part of 

(R f •i/') has no one-particle intermediate-state contribu­
tion. It also has, as a consequence of (48) and the 
retardedness condition (12), no retarded or advanced 
one-particle singularity. Unfortunately, we can prove 
this here only by going back to the full functional (R.} 
Equation (48), together with (12) and (30), (38) etc., 
yields a local field for which the proof given at the 
beginning of this section is applicable. Thus, the one­
particle singularities of (R.) are known, and since they 
have been subtracted out as described after (46), (48) 
does not contain them any more. Presumably, a more 
direct proof on the basis of (48), (12) is possible. 

Equation (48) can be given a different form by ex­
panding the right-hand side as in (43), using (39), (40) 
etc., to express everything in terms of (Ri.). With the 
abbreviation, 

QO 

i.:l+8(x-y)= 2: (R x •1 i8)(R1•2i') ... 
mln-o 

x (Rm- 1•m i·)i.:l+(xm - Yn) 

. (R(n-l)' .n' i8) . •. (Rp .2' i8)(R/I.I' i.), (50) 

we obtainS1 

([R f' ,R v'J i) 
QO 1 

= 2: -(Rx.u ... n i8)i.:l+ 8 (1,l')· .. iM'(n,n') 
n-2 n! 

QO 1 
. (R ii .I'2' ... n' i8)+ 2: --(RU2i.) 

n=4 (n-2)! 

X (R2.n ... n i8)i.:l+·(1,l')i.:l+·(3,3') 

. i.:l+·(4,4')· .. i.:l+' (n,n')(RIi.I'!'." n' i')+ . .. , (51) 

where further formal tools could be introduced. We only 
remark that if (51) is used in (48), it is readily seen from 
the exponential structure of (35) that all s signs in (48), 
(50), and (51) can simultaneously be dropped,32 as one 
would have expected. 

The question of whether in (48) the functional 

31 Here infinite sums seem to occur, but because of (R s .i8) I J_O 
=0 in each finite order of J only a finite number of terms in (SO) 
and (51) do not vanish. An infinite number of intermediate 
particles, however, means that also external relative momenta 
must be infinite because of frequency conditions. 

as Equation (35) shows that the s sign can be replaced by 
operating with an exponential functional differential operator on 
both sides of (48). By considering ascending powers of J, one 
shows by complete induction that the exponential operator could 
have been omitted because of (Rl') I J_o=(Rl, ,/) I J_o=O.-We 
could have obtained this result more easily by inu-oducing, 
following J. Schwinger, footnote 18, J(x} instead of J(x} as vari­
able, see (34). For other purposes, however, this change does not 
prove convenient. 

(R!.i/') can be singled out by multiplication of both 
sides with 8(x-y) will be discussed in Sec. 5. 

We have seen that (44) can be formulated entirely in 
terms of one-particle irreducible functionals, the one­
particle singularities cancelling. We plan to eliminate in 
the next step the two-particle singularities in (48) and 
to express it in terms of two-particle irreducible func­
tionals. We found it too difficult to perform this next 
step in the same generality as the first one, because the 
various possibilities of two-particle cuts in a general 
graph are complicated to disentangle. We shall be more 
modest and will:first present for purposes of illustration 
the method to be used in the next section here, in 
application to the much simpler one-particle-case. 

Let us restrict our attention to the one-particle re­
ducibilities of the functional (R"'.II .... ) between x and 
the whole group yz· . '. The ansatz, 

(R".II .... ')= (R ",.l)(RI. liZ'" i) (52) 

defines a functional (R l •VZ '" i) because with (39) and (37) 
it can be solved to give 

(R",.vz ... i)= (R".'Vz ... ')- (R"'.I i ·)(R1•1I .... '). 

The indices of (R".lI z", i) do not denote functional 
derivatives. 

We rewrite (52) as 

(53) 

which is to express that if R,,' is inserted into a commu­
tator or anticommutator and, if as in (43) contraction 
differentiations are to be carried out, r(x,l), though 
being numerically equal to (R",.l), must not be differ­
entiated, but (52) should be used instead. With (37), 
(39) we can rewrite (53) as 

(54) 

where r;(x,I) numerically equals (R",.r i ') but must, as 
before r(x,l), not be differentiated for contractions. It is 
convenient to rewrite (54) as 

(55) 
where 

_ {O if once differentiated 
R= 

'" R '" i if at least twice differentiated 
(56) 

for purposes of contraction. We depict (53) and (54) in 
Fig. 5. The broken lines indicate where contraction 
differentiations should be applied. Other differentiations 

- t = + i 
I I 

FIG. 5. Alternative analysis of (R s '), Eqs. (53) and (54). 



                                                                                                                                    

GREEN'S FUNCTIONS IN QUANTUM FIELD THEORY 259 

can be carried out either like contraction differentiations 
or as general differentiations of all functionals.33 

We now insert (53) and (54) into (44) in the following 
way: in all terms we shall exhibit the one-particle 
reducibility between x and y nearest to x, if there is any. 
With (37), 'the equation after (44), and (13) this gives29 

ri(x,u)(R".fI)+aRet'(X-y) 
+(Rz.'Vi)-(R"j)r(y,u) - AR.t' (y-x) 

= -a (x-u)(RII,,,)+ri(x,u)i([R,,,R II]) 

-(R",."')a(u-y)+i([R",i,.R,,i])r(y,u). (57) 

In analogy to (45) we write 

i([R,ti,Rr;i])=ri(x,u) -ri(u,x) -AI/(x-u)-1/;(x,u), (58) 

which defines the functional1/;(x,u). Upon use of (58), 
(44), (56), and (53) in (57) we obtain 

ARet' (x-u)1/;(u,fJ)r(y,v) =0, (59) 

wherefrom 1/;(u,fJ) =0 follows.34 Thus (58) becomes, be­
cause of (56), identical with (48). 

A third method, and actually the simplest one, is to 
insert (53) into (45). However, this method is not 
practical in the two-particle case. 

Insertion of (53) and (55) into (19) etc., allows to 
exhibit, for instance, in the manner explained before 
(57), the one-particle reducibilities. However, we shall 
not need the formulas obtained, which in all cases can 
also be written down by inspection. 

The Eqs. (44) or (47) also give one-particle singu­
larities from the aRet-parts of the end lines leading to 
x or y, according to (15), (16). Equating the residua on 
both sides of those equations gives the unitarity condi­
tion. This technique is analogous to Zimmermann's for 
deriving the asymptotic condition.23 Of course, here the 
interchangebility of integrations has been assumed, by 
reference to Zimmermann's work. lo 

As a useful result of this section we shall keep in mind 
that one-particle singularities always cancel when (44) 
or (45) are used and can be dropped at an arbitrary 
stage of the calculation. 

3. TWO-PARTICLE STRUCTURE 

Type of Singularities 

Retarded functions have singularities as a conse­
quence of two-particle cuts in double graphs. These 
singularities are analogous to those Feynman ampli­
tudes have as a consequence of two-particle cuts in 
Feynrnan graphs and appear at the threshold of a real 
two-particle energy, which is 2m in our case. The 

.character of these singularities is derivable from uni-
tarity and the relevant two-particle phase space factor. 

33 Of course, "contraction differentiations" are ordinary func­
tional differentiations, but we find it convenient for our purposes 
to deal with them as explained. 

M Multiply (59) from the right by 'i(O,W), integrate and use (41), 
(37), and again (59). See, however, note added in proof. 

In a double graph there are, as (25) shows, several 
types of two-particle cuts. One may cut two aRet-lines, 
one aRet- and one aAv-line, and one ARet- and one 
al/2.line. Let us discuss the integrals, 

HR.A.l(X· .. ,Y"') 

= f f dzdz'dudu'F(x·· ',zz') 

XARet(Z-u)aRet.Av,l(Z' -u')G(y' .. ,uu'). 

For the singularity under consideration, the functions 
F and G merely act as short-range form factors, which 
provide a cutoff for the otherwise divergent integrals 
obtained by replacing F and G by point functions. If p 
is the momentum conjugate to x-y, and thus the mo­
mentum transported by the two cut lines, with z= p2 
- 4m2 one finds for the Fourier transforms of H Rand HI 
a singularity of the type const (-z)t, where for z>O the 
branch is to be chosen according to the sign of po, and 
no singularity for HA • Nevertheless, this last type of cut 
has to be taken into account since otherwise the 
elimination of the two-particle intermediate states in 
the absorptive parts of the "irreducible" functions would 
not be possible. In (44) the singularities just considered 
of the left-hand side will be equalled on the right-hand 
side if it is written as in (43) by similar two-particle 
singularities in the two factors of the retarded and 
advanced type, respectively, and by terms with a two­
particle intermediate state where the pairs of lines 
ia+·ia+ and (-ia-)' (-ia-) give the singularities 
constO(z)O(po) (z)t and constO(z)O( - po) (z)t, respectively. 

Choice of Equations 

If we follow the method explained in the last section, 
we have to choose an ansatz that is the analog of (53) 
and (55), or Fig. 5. The enumeration of possible two­
particle cuts just given, as well as inspection of (25) to 
determine the factors35 leads to 

1 
R:r;. liZ," =-r(x,y12)Rr2.zu i+r(xl,y2)R~.I." i (60) 

2 

as the analog of (53), where numerically 

r(x,y12) = (R: •. 1I12), r(xl,y2) = (R",I,U2)' 

In this section barring of coordinates is to indicate the 
absence of the full one-particle reducible parts (d., 
Fig. 4), and not of aRet' or aAv' alone.as Equation (60) is 

36 For instance, the factor of the last term of the right-hand side 
of (60), i.e., with a retarded and an advanced lin~, is obtained by 
functionally differentiating (25) with respect to J and J. The dl­
part from the first differentiation does not contribute since there 
must be at least one retarded line on the cut. 

36 Barring, always applied to the irreducible functionals, can be 
made part of their defiI!.ition such that nonbarring of z means 
multiplication of RU,I .. ' by {Ra .• ) and integrating over 3. Note 
that the irreducible functionals are always connected. They do not 
contain terms of the form {RI.a)KaAl(3-4).R!.i ...... 
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depicted in Fig. 6, where a simple line stands for the 
function D./2 and the stroke indicates where contrac­
tion differentiations (besides z and u) are to be applied. 
The graph with the D.l/2-line is absorbed in the first 
term on the right-hand side of (60) because r(x1,y2) 
according to (19) also contains 

1 1 
-( {Rx,A in (1)} 1/2) = -( {Rx, 1/2,A in (1)}), 
2 2 

which can be evaluated with (17) to give just the re­
quired term. The functionals RU,zui and R~,Izui are two­
irreducible between 1, 2 and z, u in an intuitive sense to 
be made 'precise later. 

Since two Ri functionals appear in (60), it has to be 
supplemented by the ansatz 

removal of one-particle reducibilities. 1'='1 is the 
unamputated "unit matrix" with the elements 

1 1 
'l u =-r(x,z)r(y,u)+-r(x,u)r(y,z), 
22· 

1 1 
'1 l2= --r(x,z)r(yu) +-r(xu)r(y,z) , 

V'1 V'1 

'l 2l =O, 

'1 22 = r(x,z)r(u,y), 

and matrix multiplication implies integration over the 
interior coordinates. 

We now write down, according to the symbolic 
equation 

1 'F'='Fi(1'+'F'), (67) 
RX1/,zu'=-r(xy,12)RI~,zui+r(xyl,2)R~,rz"i, (61) h f' ( 5) 1 7 2 t e our equatIOns analogous to 5 ,name y36,3 

where 

(R x1/,zu')= (R x1/,zu)- (R x, z)(R lI , ,,)- (R x, u)(R y, z) (62) 

in analogy to (37). The use of this definition of the 
primed functional is convenient here because it allows 
RU,zui to be connected. 

In order to obtain complete analogy to the system 
(53), (55) we have to introduce two more equations of 
the type (53), namely 

1 
Rxz,yu' =-r(x,y12)RI2z,u i+r(xl,y2)R2z,Iu i, 

2 
(Zo<Uo) (63) 

and 

1 
Rxyz,u' =-r(xy,12)RI2z,u i+r(xyl,2)R2z ,Iu i, 

2 
(Zo<Uo), (64) 

where the time restriction is necessary since otherwise 
an additional term with two advanced lines would have 
been needed, and the prime of R X1/z,u' denotes the con­
nected part similar to (62). 

The vacuum expectation values of (60), (61), (63), 
and (64) together can be written in the symbolic form 

'F'= (l'+'F')F/' (65) 

Here 'F' is the two-by-two matrix with the elements 

1 
, F'u =-r'(xy,zu), 

2 

1 

1 
, F'l2 = -r' (xyu,z) , 

V'1 

'F'21 =--r(x,yzu), 'F22'=r'(xu,Yz), 
V'1 

(66) 

where r'(xy,zu) is defined as in (62) and similarly 
r'(xyu,z) and r'(xu,yz). 'F'; is the same matrix with the 
irreducible functionals, and absence of a prime means 

_ 1 _ 
Rx,yzlI=Rx,yzu i+-r i(x,y12)R12 ,zu 

2 
+r i(xI,y2)R2 ,lzu, 

+r i(xyI,2)R2,1zu, 

_ 1 _ 
R xz , YU' =R",z,lIu i+-r i(x,y12)R12z ,u 

2 

and 
_ 1 __ 

R xyz , ,.' =R x1/z, u i+_·r i(xy,12)R12z ,u 

2 

+ri(xyI,2)R2z ,lu, (zo<uo), 

where, in analogy to (56),38 

FIG. 6. Two-particle structure of (R x, yzu), Eq. (60). 

(68) 

(69) 

(70) 

(71) 

(72) 

37 By integration of the field equation in the Heisenberg repre­
sentation, G. Kallen, CERN/T/GK-2, obtained some of the 
equations mentioned in footnote 18a and found the ladder ap­
proximation of (69) as Bethe-Salpeter equation. 

38 This is seen if (56) is replaced by the explicit definition 
Rxi=Rxi- fd1ri(x,1)J(1) where for contractions only J but not 
,,(x,1) is to be differentiated. Similarly, the notation of (72) is 
meant, where for contractions only (R1) and (R2) but not ri(x,y12) 
are to be differentiated. Equation (72) is only correct up to one­
particle reducible parts which, however, are always dropped. 
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and similarly for the other Ri. Equation (68) is depicted 
in Fig. 7. 

Discussion of Equations (65), (67) 

The vacuum expectation values of (60), (61) can be 
tak~l!. as determining equations for ri(I2,zu) and 
ri(~,l~u), and (63), (64) for r;(I2z,u), (zo<uo), and 
ri(2z,lu), (zo<uo). On the other hand, (68), (70) could 
be chosen for ri(x,yL2) and ri(xLt2), (1 0<20), and 
(69), (71) for ri(xy,12) and ri(xyl,2), (10<20). Since 
the iterative solutions of those pairs of equations do not 
break off, contrary to the situation in the last section, a 
more general discussion is here required. 

For (65) to have a solution F/, there must not be a 
left eigenvector of (1'+'F') to the eigenvalue zero. The 
solution is unique if there is also no such right eigen­
vector. For (67) right and left are interchanged. From 

(l'+'F')(l-F/)= (1-'F i)(1'+'F') = l' (73) 

it easily follows that if both Eqs. (65) and (67) should 
have solutions, both F i are unique and equal. This is the 
only situation we are interested in. Since from (73) we 
derive39 

FIG. 7. Alternative analysis of (Rz. Y%u>, Eq. (68). 

choose in (75) the retarded boundary condition.41 We 
hope that a more intensive study of (73), using prop­
erties of retarded four-point functions, will lead to such, 
or an equivalent, result and expect the analyticity 
property of F(K,Ll,Ll') in the Ko half plane to be im­
portant in this connection. 

The ri(x,YzU) etc., being determined, the higher con­
traction derivatives Rx.lIzuvi etc., can be found from 
(74), and with (73) easily shown to solve (60)" (61), 
(63), and (64). 

Result of Substitution in (44) 

Equations (68) and (60) are now inserted into (44) in 
the same manner as (55) and (53) were. The calculation 
is given in the appendix, and we state the result. 
D~ge, in analogy ~o i58), threefunctionals X i(:r12,y) , 

yi(xl,2y), and Zi(xl,2y) by the equations 
o 0 
-F/= (l-F/)·-F'· (l-F.'), (74) Xi(x12,y) = T i(12,xy)-r i(Ix,2y)-r ; (2x,Iy) 
oj oj 

it suffices to consider (73) in lowest (zero) order of J, all 
higher orders of F.' being obtainable with the help of 
(74) from lower orders. In zero order of J (73) reduces 
to a relativistically invariant integral relation between 
four-point functions. Because of translational invari­
ance, we take the Fourier transforms of (73) with re­
spect to the distance between the later coordinate of the 
later pair x, y and the later coordinate of the earlier pair 
z, u, in a fixed coordinate system. Since this distance has 
nonnegative time component, the Fourier transforms 
F(K,Ll,Ll') and F .• (K,Ll,Ll') , where Ll and Ll' are the 
relative coordinates of the later and the earlier pair, are 
.analytic in the upper Ko half plane. F(K,Ll,Ll') will not 
be one-particle singular at some discrete real K since we 
assume that all these reducibilities in the equations have 
been removed.40 

We now have to assume that (73), in zero order of J, 
possesses a solution of the form 

F i(K,Ll,Ll') =F(K,Ll,fl') 

+ f F(K,Ll,I::!.")R(K,I::!.",I::!.')dLl", (7S) 

where the resolvent R(K,I::!.,I::!.') is analytic in the upper 
Ko half plane up to discrete singularities, at which we 

39 Note that primes can be removed by the procedure explained 
in footnote 34. . 

40 Therefore, the homogeneous Bethe-Salpeter equation (1-' F,)A 
=0 no longer has a solution. 

1 _ 1 _ _ 
+-({RY,2y i,R .. } i)+-({Rui,R ... yi} i) 

2 2 

1 _ 1 _ _ 
+_({RUyi,Rf} i)+-({R2,fi,Rf.yi} i) 

2 2 

-i([Rr2i ,Rx• iii] i)-i([Rn, lI i ,R;;Ji) 

-i([(RrR2),RfjJi)-i([(RrR2)y,RfJi), (76) 

Yi(Ix,2y) = r If,x2y) -r i(x,12y) 

-i([Rr,y,Rf .2] i)-i([Rr,R".Y'ii] i) 

- i([Ruyi,R .. J i)_ i([Rr.2',R,&.(i iJ i), (77) 

_ _ _ _ 1 
Zi(lx,2y)=r i(lx,2Y)--({RI.y,R'&,d i) 

2 

1 1 
-2({RI,Rf. yd i)-2({Rr.2yi,Rf} i) 

1 _ _ 
--({Rui,R!.yi} i), (78) 

2 

41 This is meant as follows: the equation f(Ko)(Ko-C) = 1 has 
no solution for Ko=C, but for the Ko-integration to be perfor!J.led 
afterwards we use the solution f(Ko)= (Ko+i~-C)-l, ~ -> O. 
Singularities at ImKo>O require a contour deformation. Since a 
function. that vanishes on an interval and is analytic in the half 
plane vanishes identically, we expect only discrete singularities of 
R(K,A,A'), which can be tackled as described. Note also that due 
to (75) the property r (x,yzu) = 0 unless y is timelike advanced with 
respect to x implies the same property for ,,(x,ysu). 
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which (:orrespond to the equations42 

(18), and (19), respectively. These functionals satisfy 
the linear homogeneous equation 

1 _ 1 __ 
-Xi(x12,y)r(z,u12)+-Yi(lx,2y)({ R •. 1,Rz} ,,) 
2 2 

+iZi(lx,2Y)([R.,1,R2],,) =0, (80) 

which is the analog of (59). 
The meaning of the brackets { }' and [ ] i, denoting 

the two-particle irreducible part of the anticommutator 
or commutator, will be explained later. 

Another linear homogeneous relation between Xi, Vi, 
and Zi is obtained from (20), written as 

by using (61) and (68). The method of the appendix 
gives 

1 __ 
_ Xi (x12,y)r(zu,12) 
2 

1 __ 

--yi(lx,2y) {([R 2 , u,Rz,l])+([R2 , z,R",l])} 
4 

1 __ _ 
_-Zi (lX,2y)[( {R 2 • u,Rz,l} )+( {R 2 • z,R" .I}) 

4 

which is the analog of an equation for one-particle 
reducibilities we did not give. 

A relation between yi and Zi alone is obtained from 

1 
R:x;z,yu =-{R:x;,Rz}lIu, 

2 

derived from (19), upon use of (70), (68), and (60). It is 

1 __ 
+-Zi(lx,2Y)({Rz.l ,R2 ... })=0, (zo<uo). (82) 

2 

The time restriction implies 10 <20• 

,If in the last example the restriction Zo< Uo is dropped, 

!r .. (xI2,y)R •. Ul2 ' Thereupon one obtains instead of (82), 
the equation 

i __ 
- Yi(lx,2y)[ -ir(z,u12)+([Rz.l,R2]u)] 
4 

1 _ 
+-Ui(x12,y)r(z,u12) = 0, (83) 

2 
where 
__ 1 _ 1 __ 

U'(xI2;fj) = ri(x12,y)+-r.(x,12Y)--({R t ,ri',Rui } i) 
4 2 

i i _ 
--([R.f.I,Rf./iJi) __ ([R f .ri2i,Rr]i) 

4 4 

i 1 _ 
--([Rf .!!,Rr.IlJi)--({Rf • lI i, (RrR!)} i) 

4 2 

1 
--({R.,,(RrRii)lI} i) (84) 

2 
in analogy to (21). 

There exist many more linear homogeneous relations 
between quantities like those considered. For example, 
from (61) we derive by ordinary differentiation 

A 1_ 
R zu • "'II =R.". "'II '+-r .(12,xy )R. u •l2 

2 
(85) 

. where R .... %lI i is similar to, but not identical with, 
R"""'lI i because of a different irreducibility condition. 

On defining 

:Y(u. fll) '= r ,(I,2xy) -r i(2,Ixy) - i([Rr.Ii,Rii . .o] i) 
-i([Rr. fii',Rii]i)-i([Rr. f,Rf.ii] i) 

-i([Rr,Rf.fli'J') (86) 
and 

1 
Z'(12,xy) = r.(12,xy) --({Rr. f,Rii.ll} i) 

2 

1 1 
--({Rr.xlli,Rd i)--({Rr.ii,R2• f}i) 

2 2 

it is necessary to add in (70) the fourth term we obtain from 

4t Equation (79) is easily derived from (18) and (19). The index 
of the brackets denotes, differentiation of the whole brackets. 

1 
R zu .:X;lI=-{R.,R,,} "'II 

2 
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the equation 

1 __ 
--Zi(12,xy)({R z ,1,R u ,2})=0, (88) 

2 

Discussion of Results 

In all the definitions (76), (77), (78), (84), (86), (87), 
the right-hand side would vanish if the irreducibility 
sign were absent. Thus, these equations are the two­
particle analogs of (48) and similar equations easily 
obtainable in the one-particle case, provided we can 
show that the left hand sides Xi etc., vanish and that 
the "irreducible" brackets actually have that meaning. 

We did not succeed in strictly excluding the possi­
bility of a nontrivial solution of the linear homogeneous 
equations (80), (81), (82), (83), (86), which are analo­
gous to (59) but cannot be solved in t~e same ,:"a:y.43 
However, one can derive still more equatIOns restnctmg 
the quantities Xi etc. For instance, it was found that a 
method analogous .to the first one of the foregoing sec~ 
tion, resulting in (47), leads to an equation between ~' 
and Zi, containing linear and bilinear terms. In this 
case, however, the calculation is considerably more 
cumbersome than that one of the appendix. 

The explanation of this fact that, in whatever way one 
proceeds, the trivial solution Xi= Yi=Zi= ... =0 re­
mains has been mentioned in the introduction, namely 
that the renormalized perturbation theoretical solution 
(and, in a still more formal sense,44 even the unre­
normalized one) is a formal solution of the system (9) or 
(12), (18), and it was the structure of that solution 
which we took as a guide in setting up the Bethe­
Salpeter equations of this section. Our findings not only 
show that the "trivial" solution is a consistent one, but 
strongly suggest that it is the only possible ~oluti?n of 
the nonlinear system as far as the two-partIcle smgu­
larities are concerned or at least the only solution of 
physical interest. W; hope that further analysis will 
decide this question. In any case, if the system (80) etc., 
admits only the trivial solution in lowest order of J, this 
is so in all orders, as is seen by taking functional 
derivatives. 

':Q~ 
~z 

/ .b~ / 

L~U r~---cr -
y V 

FIG. 8. Two-particle reducibilities of ({ih,~yi,Rx} c), Eq. (A.2). 

43 See, however, note added in proof.. . . . 
44 Note that if entirely formal mampulatlOns ,,!,Ith smgu.lar 

functions are considered satisfying (25) solves (9) with H w bemg 
any polynomial. 

~f6/ 

'{~z 
/~o/ ' ___ '7-' 

~: 
FIG. 9. Two particle reducibilities of ({Rx, u,R v, z}c), Eq. (A.3). 

Irreducible Brackets 

The meaning of the symbol i at all commutators and 
anticommutators in (76), (77), (78), (84), (86), and (87) 
is strictly defined by integral equations of the type 
(A.2), (A.3), (A.5), (A.6) etc., of the appendix A, and is 
discussed at the end of that appendix. The result is that 
it corresponds to picking out of the ordinary brackets 
the two-particle irreducible parts as described in the 
following. 

Note that all those brackets have the property called 
fJ that they do not allow a cut that separates x, yand 
1 ' 2 from each other and cuts only either two lines (in 
the sense of the Bethe-Salpeter equations of this section) 
in one of the two factors, or one line in one factor and 
a free-particle (contraction) line. This is trivial. for 
brackets like ([RI./i,R z.2]) and follows from (72) and the 
definition of the irreducible factors for brackets like 

({Ru/ii,R x}), ({RI,2 i ,R.,.yi}), and ([(RIR2),R f , 11']), 

Thus, two-particle cuts can only be of the type illus­
trated by the examples of Figs. 8 and 9. These graphs 
describe the vacuum expectation value of brackets 
evaluated as on the right-hand side of (43). Broken lines 
stand for contraction functions. The other symbols have 
the usual meaning, and the one-particle structure in­
vestigated in the last section, d., Fig. 3, has been used. 
"Irreducible" means that, in order to avoid double­
counting, on the upper left from the cut no f~rther tW?­
particle cut should be possible. The two-partIcle cuts m 
the graphs are composed of two one-particle cuts of 
known properties, and thus completely defined: . 

As shown at the end of appendix A, the exphcIt form 
of e.g., ([R f .I,R2•IiJi) is obtained by stretching out the 
functionals (R:r;.l) and (R2 •1I) into a chain of any length 
of alternatively irreducible and reducible func~ion~ls, 
and connecting the irreducible links of one cham With 
all irreducible links of the other chain by functional 
differential operators 

I: = exp[ffdU,'dUIl_o -
OJ' (J.L') 

XK".i.1+(u'-u")K u u ° ] 
OJ" (u") 

such that the whole graph becomes two-particle irre­
ducible, the one-particle-reducible end lines being cut 
off. An example is given in Fig. 10. All such construc­
tions are to be summed up, and the conjugate complex 



                                                                                                                                    

264 K. SYMANZIK 

FIG. 10. Contribution to 
([R x,I,R2,yJi ). 

quantity subtracted, or added for the anticommutator. 
The other brackets can be similarly described. 

It is important to note that this expansion breaks off 
for any finite momentum transferred between the two 
chains, since on each irreducible link must end at least 
one free-particle line, and all lines have the same fre­
quency sign. Already this shows that this expansion has 
no relation to perturbation theory but is an expansion in 
the number of overcrossing groups of contraction lines, 
which might be called a structure expansion. It directly 
shows the absence of two-particle singularities (or 
reducibilities) in the irreducible brackets. 

In the appendix it is also pointed out that the sum of 
all brackets on the right hand side of (77) vanishes if the 
distance between x and 1 is spacelike, or if at least one 
of the two coordinates y, 2 is not timelike advanced to at 
least one of the coordinates x, 1, provided we assume 
that the solutions of (A.2), (A.3) and similar equations 
that strictly define the irreducible brackets are unique. 
The sums of brackets in (76), (78) etc., have similar 
properties, in concordance with (12). 

Decomposition of Other Functionals 

On the basis of the considerations which led us finally 
to (75) we can easily obtain relations for functionals 
with less than four coordinates. Let us define two 
functionals Rx,Hi i and Rxi,u i by the equations 

1 
Rx,iu=Rx,iui+-r(x,12)RI2,iui+r'(x1,2)R2,Iiui (89) 

2 
and 

1 
RXi,u'=Rxi,ui+-r(x,12)RI2i,ui 

2 
+r'(x1,2)R2i ,Iu i, (zo<uo), (90) 

where the notation has the usual meaning. The vacuum 
expectation values can be written in the symbolic form 

G=Gi+G'Pi, (91) 

where G'= {(l/Y2)r(x,zu),r'(xz,u)} and Pi has the same 
meaning as in (65) and thereafter. With (73) we obtain 
from (91) by right multiplication by l'+'P',40 

G'=G/+G/P'. (92) 

4. The possibility of calculations like these, based on (73), were 
the reason why we started our analysis by discussing the func­
tionals with four, and not with less, coordinates. 

This can further be manipulated similarly as mentioned 
a few lines after (75) to give the two equations 

_ 1 _ __ 
Rx,zu =Rx,zu i+-ri(x,l2)RI2,zU+r i(x1,2)R2,lzu (93) 

2 
and 

_ 1 _ __ 
R xz , u' =Rxz, "i+-ri(x,12)RI2z,·u+r i(xl ,2)R2z .1u , 

2 
(zO < uo), (94) 

with a similar property of the Ri functionals as in (72). 
From (89), (90), (93), and (94), equations similar to 

(77) and (78) can be derived. The result is that in both 
equations the coordinate 2 is to be omitted, and the 
replacement 1 ---7 x, X ---7 z, Y ---7 U to be made. There is 
no essential change in the definition of the irreducible 
brackets. 

Finally, we define a functional RX,yi by 

1 __ __ 
R x , y= Rx,y i+-r i(x,l2)RI2 , / +r i(xl ,2)R2,IY 

2 

1 
= R X,yi+-r(x,l2)RI2,y i+r' (xl,2)Ruy i, (95) 

2 

(to be used at least once differentiated), where R l2 ,yi is 
defined by an equation similar to (89). With use of the 
foregoing results for the other irreducible functionals, 
ri(x,y) can be shown, by the usual method, to satisfy an 
equation that arises from (77) by the replacement 
1 ---7 y, 2 and y omitted, the left-hand side being linear 
in the "remainders," corresponding to Y, Z, Y, Z in 
(77), (78), (86), and (87), of the functionals with three 
coordina tes. 

4. MANY-PARTICLE STRUCTURE 

The analysis of the two-particle singularities IS III 

principle extendible, in a straightforward way, to h.igher 
singularities. The general type of an n particle singu­
larity is, with z= p2_ (nm)2, (- z) (3n-o)/2 if n is even, 
and (-z)(3n-omln(-z) if n is odd, for the case of 
m ~ 1 retarded and n-m .11/2 lines on the cut. The 
terms with as well retarded as advanced lines are 
not singular, but must be separated out also. The 
factor in an ansatz similar to (60) of a term with 
m retarded or .11/2 lines and n-m advanced lines is 
[m!(n-m)!]-lRI ... ;n,m.-tI ... nzu ... i • Since, however, the 
calculations are expected to be, until a simpler calculus 
is found, considerably more lengthy than in the two-

FIG. 11. Analysis of (R x, .u), Eqs. (95) and (90). 
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particle case, but not to present any other difficulty, we 
take it for granted that the result will be analogous to 
those of the last two sections. . 

Rather, we would like to show what such results, 
together with those of the foregoing sections, do imply. 
Let us insert (42) and a similar equation for r(x1,2) into 
(89). This leads to the equation described, together with 
(93), by Fig. 11, where we draw all lines equal, a sum­
mation over all distributions of lines and earliest 
vertices compatible with the external ones being under­
stood, and only functionals that are one-particle irre­
ducible with respect to the exhibited coordinates (but 
not yet necessarily with respect to pairs of coordinates) 
are meant by circles and ovals. The symbol i2 and the 
broken line indicate the two-particle irreducibility con­
dition for the fourpoint and threepoint functionals. 
Separating out the one-particle irreducible part in the 
first four pointfunctional leads, as one can show, to 
Fig. 12, which upon neglect of the last term and setting 
J equal to zero describes a well-known nonlinear integral 
equation for the threepoint function, the irreducible 
function, and the twopoint function being considered 
known. For the irreducible functional, integral equa­
tions of the type shown in Fig. 13 will hold. 

One easily sees that one can reproduce the perturba­
tion theoretical structure in any detail with, however, a 
few important differences: 

A. One never arrives at a bare vertex. All vertices 
are still retarded functionals (or, with J=O, functions) 
with certain irreducibility conditions in the sense ex­
plained in the last two sections. Formally, in quantum 
electrodynamics, a vertex that is two-particle irreducible 
with respect to any external line is necessarily a three­
leg point, such that Fig. 13 reduces to a triviality. How­
ever, this is not really so because of the need of sub­
tractions in defining the real part from the imaginary 
part whose decomposition decides the irreducibility test. 
In the next section we shall give arguments why we do 
not expect a subtraction to be needed in the present 
scheme, in contrast to perturbation theory. Instead, in 
this scheme arbitrarily highly irreducible vertices will 
exist when it is formulated for quantum electrody­
namics. Thus, the freedom gained in the present more 
general formulation leads at first to the loss of an 
understanding of the absence of an intrinsic anomalous 
magnetic moment of the electron. We hope, however, 
that future study of the consistency of these systems of 
equations will clear up this point. (See also note added 
in proof.) 

Q= ~_+A + ~ 
~~-

I 
FIG. 12. Further analysis of (R~, .,,). 

-~- = -R-

-~--

+-A~ 
± 

+-~-
FIG. 13. Analysis of (R I • ,j). 

B. One can understand the structure revealed by our 
analysis as originating from partial summations in 
double (as in Feynman) graphs containing bare vertices 
with an arbitrary number of legs.44 One easily convinces 
oneself that if one tries to cast the essence of the 
structure of such graphs into drawings without drawing 
a potentially infinite number of lines as they were 
needed in depicting Schwinger's functional differential 
equation (22), one necessarily arrives at the drawings of 
generalized Bethe-Salpeter structures shown here, which 
differ from drawings of Schwinger's equations46 by the 
replacement of bare vertices by higher irreducible ones. 

Thus, the present scheme leads, upon iteration of the 
procedure of picking out reducible parts as in the ex­
amples of Figs. 12 and 13, to a "structure expansion" 
with a definite similarity to a perturbation theoretical 
expansion; the bare vertices, however, are replaced by 
"causal form factors" related to, but more general than 
the self energies and vertex parts of the renormalized 
expansion. Causality is preserved since these "form 
factors" are again r functionals, merely with an irre­
ducibility condition.47 This condition has, in a broad 
sense, the effect of rendering these form factors the less 
extended in space-time the higher the irreducibility, be­
cause of the absence of the low masses in the spectral 
decomposition of the absorptive parts; that is, of the 
functions obtained by omitting certain step functions. 
This effect is seen at the well-known spatial decrease of 
the vacuum expectation values of ordinary field operator 
products, which is exponential with a range derived 
from the lowest masses in the intermediate states,48 and 
at the then more rapid oscillation in timelike directions. 
Thus, as far as low-energy phenomena are concerned, . 
the highly irreducible vertices act similarly as point 
vertices with, however, a high-energy cutoff, as was 
already made use of at the beginning of Sec. 3. We shall 
come back to this important point in the next section. 

.6 See, e.g., Band S, p. 430; and R. Utiyarna, S. Sunakawa, and 
T. Imamura, Progr. Theoret. Phys. 8, 77 (1952) . 

• 7 It should be clear that these form factors have as little to do 
with the form factors of a nonlocal theory as the vertex part, or 
any generalized vertex obtained by partial summation, of a 
renormalized local theory has. 

.8 R. Haag, Phys. Rev. 112, 669 (1958). See also G. F. 
Dell' Antonio, P. Gulmanelli, Nuovo cimento 12, 38 (1959); and 
H. Araki (preprint). 
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Conversely, perturbation theory can be looked at as 
a degenerate structure expansion. This view would ex­
plain its moderate success in certain applications even 
to strong interactions as, for instance, in pion-nucleon 
physics,49 however, more recently described as "polo­
logical." The difficulty one would encounter in quantum 
electrodynamics has already been mentioned, however, 
one could also think of pecularities of this very special 
type of interaction. 

Finally, we would like to repeat that in spite of their 
irreducibility, vertices in the generalized graphs may 
have any number of external coordinates. Especially, by 
taking functional derivatives, an arbitrary number of 
lines external with respect to the whole functional that is 
analyzed will be set free.27 Of course, setting J = 0 gives 
ordinary graphs, whereupon, for instance, the squares in 
Fig. 12 reduce to LlRet' -functions. 

5. STRENGTH OF SINGULARITIES 

In the last two sections there appear various integrals 
that at first sight seem to diverge. Actually, all integrals 
would do so for J = 0 in renormalizable perturbation 
theory, starting at (60). In order to grant these expres­
sions a meaning, an investigation of the behavior of the 
functions at high momenta is necessary. 

One -Particle Propagator"° 

First note that LlRet' is restricted only by (49), which 
serves as its definition, and not by (95) because of (37). 
In all formulas except (49) LlRet' is considered known. 
Let us rewrite that formula more explicitly as 

- LlAv' (x- y)+LlRet' (x- y)+Ll(x- y) 

= J Jdx'dY'LlRet'(x-X')II(i'-Y')LlRet'(Y-Y'), 

where ll(:t -ii') is a real odd function. By Fourier 
transformation we obtain 

- ~A v' (p) + .:iRet' (p) - 27riE (po)o (f - m2) 

= 27ri~Ret' (p)fi(p2)~Av' (P)E(PO), (96) 

where fi(f)51 is real, vanishes for f<4m2 up to Dirac 
. delta functions, and is nonnegative for f'C. 4m2• 

Actually, in the axiomatic scheme, the primary 
quantity is not fi(f), but 

(97) 

though it might be the other way round in a scheme to 
solve the whole system (48). Thus, the actual definition 
of fi(p2) will depend on .:iRet'(p). According to Hall and 

<9 See, e.g., R. E. Marshak, Meson Physics (McGraw-Hill Book 
Company, Inc., New York, 1952). 

60 The following analysis is mainly a generalization of that of 
footnote 8. 

61 211'fi(pt) is identical with the function F( -pt), the absorptive 
part of Dyson's proper self energy part, of footnote 8. 

Wightman,/;2 .:iRet'(p) = .:iAv'( -p) is a function of f and 
the boundary value of.a single function J(z), which is 
analytic in the cut z= p2 plane apart from a pole at 
z=m2, on the upper or lower side of the cut, respectively, 
if po~O. Equation (96) can be rewritten 

J(x+iO) - J(x-iO) = 27riO(x-m2)+27ri8(x-4m2)p(x). 

The function J(z) can be defined by 

1 i oo 
p(t) 

J(z)=--+ dt-
m2-z 4m2 t-z 

(99) 

in the usual way, if this integral exists. Then J (z) has 
positive imaginary part in the upper z half plane, 
vanishes in infinity in every direction not parallel to the 
positive real axis, and vanishes at most at one real point 
Xo between m2 and 4m2, and at a possibly infinite number 
of real discrete points X.>4m2, p= 1· . '. At these zeros 
the real part of J(x) will have positive slope and the 
function fi(x) will be defined only up to a delta function 
with positive coefficient. 53 

If the integral in (99) does not exist, subtractions54 

will be necessary in order to arrive at a definition of J(z). 
These are, for our purpose, most conveniently carried 
out by defining 

L Z-Xl 

J(z) = g(z) II --= g(z)Q(z), (100) 
l=lm2-xl 

where the Xl are real and between 0 and m 2• By using 
(100) in (98) we obtain as a possible definition of J(z), 

J(z) =Q(Z)[_l_+Joo dt p(t) ], 
m2-z 4m2 Q(t)(t-z) 

(101) 

where the bracket g(z) has the same properties as (99). 
Because of the above choice of the zeros of Q(z), the 
amputation defined in Sec. 2 and often used later re­
mains a well-defined operation, since at all those zeros 
the retarded (or advanced) boundary condition, whose 
observation was always implied, gives a unique defi­
nition. (See, however, note added in proof.) 

The exceptional case is (49) or (96) itself, if not p(p2) 
but ii(p) is considered the primary quantity. We shall 
show in the appendix that if we do not permit nonCDD 
zeros, we have the representation 

J(z) = (m2-Z)-1[B+ roo dt __ IT_Ct_)_ 
J4m , (t-z)(t-m2) 

(102) 

52 D. Hall and A. S. Wightman, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. Mood. 31, No.5 (1957). 

63 For a thorough discussion see L. Castillejo, R. H. Dalitz, and 
F. J. Dyson, Phys. Rev. 101, 453 (1956). We shall refer to zeros 
with these properties for brevity as CDD zeros. 

54 See, e.g., Band S, p. 587. 
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where B is real nonnegative, the x). are real, the C). 
positive, and 

J
'" ii(t) C). 

B+ dt +1:---
4m2 (t-m2)2 (X). _m2)2 

1. (103) 

Comparison with (99) gives 

B-I=I+ ('" p(t)dt. 
J4m 2 

If B=O, we obtain 

[1'" ii(t)dt C). ]-1 
f(Z)~ --+1:--

4m2 t-m2 x).-m2 
(104) 

if z ~ 00, such that in this case, if (99) should apply, the 
sum, or integral, or both, in (104) must diverge, since 
otherwise in (99) a constant corresponding to (104) 
would have to. be added. 

Thus, unless 

L
OO ii(t) 

1= dt < 1 
4m2 (t-m2)2 

(l05) 

there cannot exist a representation of the type (99). If 
1< 1, one may choose a finite B, or CDD zeros, or both, 
such as to satisfy (103) and to make (104) vanish if we 
decide for B=O. fez) is defined by (102). 

We shall show in the appendix that if I> 1 but 
ii(t) =0(1-1) in infinity, one might possibly find, in any 
case if ii(t) vanishes stronger than any negative power 
of t, a subtracted form of fez) that belongs to that fi(t) , 
by choosing sufficiently many nonCDD zeros. If, how­
ever, I does not exist there is no way to define a function 
fez), with only polynomial growth in infinity, that gives 
ii(t). This is the irreparable "ghost" situation. 

The "normal" situation is that considered before, 
nameJy1:::=;1. We saw thatif (99) should hold withI=I, 
the integral and sum together in (104) will diverge, 
which means that in (49) we cannot obtain ARet"(X-fj) 
by multiplying (49) by8(x-y), but that one subtraction 
is required. Actually, the data for two subtractions are 
available, as insertion of (103) into (102) shows. This 
is the situation in renormalizable perturbation theory, 
where fi(t) increases in infinity like t(lnt)!', JL~O, and 
(102) is not applicable. We find that permitting sub­
tracted forms of fez) does not help here. 

If 1<1 there are various choices for unsubtracted 
fez), as (103) and (102) show. The former conclusion on 
the stepfunction multiplication only holds if we decide 
for B=O, and the divergence of (104) is not due to CDD 
zeros, which, however, can hardly be expected to be 
separable from the ii(I)-determination. 

Other Functions 

The finding that for a consistent theory of the type 
considered in the axiomatic scheme, the strength of the 

singularity of an ARet'-amputated function is less than 
in renormalizable perturbation theory is of great in­
terest. Whereas we can prove it only for the absorptive 
irreducible part of the propagation function itself and 
for the vertex function with two momenta on the mass 
shell,so we conjecture it to be true for all functions. This 
would imply that for the vertex function where in 
perturbation theory, independent of ARet- or ARet'­
amputation, one subtraction is necessary, in our treat­
ment no subtraction would be required,65 and that all 
ARet'-amputated functions could be obtained66 from the 
absorptive parts by multiplication of (48) by the step 
function. 

Let us relate these considerations to renormalization 
theory. Consider, for instance, the usual pseudoscalar 
meson theory with, among others, the coupling term 

gu;j;"'YST~"cp,,i 

in unrenormalized, or 

Zlgr;j;r'Y.T~4ri 

in renormalized quantities, because of 

1f,,=Z2it/;r, ;j;u=Z2i;j;r, cp"i=Zaicpri, gu=ZlZ2-1Za-lgr. 

Arguments57 can be given for the validity of the Born 
approximation at high energies. For the vertex part the 
Born approximation is obtained by taking in 

the disconnected part, which gives 

Thus, the amputated vertex behaves like Zlgr'YSTi in 
infinity, which also holds if two of the particle momenta 
are on the mass shell, the third one going to infinity.58 
Comparison with the results on the meson propagation 
function50 shows that Zl =0.S9 We thus find that the 
ARet'-amputated vertex function goes to zero in infinity 

50 A similar conjecture has been brought forward by G. F. Chew, 
UCRL-8194, in connection with the electromagnetic structure 
problem of the nucleon. 

5sThis was suggested to the author by F. J. Dyson. 
57 G. Kiillen, in "Quantum electrodynamics," Encyclopedia of 

Physics, Vol. 5, part I, p. 302 (Springer Verlag, Berlin, Germany, 
1958); CERN 57-43. See also K. Symanzik, Nuovo cimento 11, 
269 (1959). 

58 Note that use of a dispersion relation for the vertex in a form 
that is proven (e.g., in the meson-nucleon vertex keep a nucleon 
momentum off the mass shell) gives a definition for Zl similar to 
the well-known definitions of Z2, Z3, and the self masses in terms 
of integrals over spectral functions, e.g., H. Lehmann, Nuovo 
cimento 11, 342 (1954). 
~ In quantum electrodynamics, because of Ward's identity, this 

leads to Z2=O. This argument has been used by G. Kallen, 
(footnote 57), to identify one vanishing renormalization constant 
in quantum electrodynamics if one adheres to Dyson's perturba­
tion-theoretical renormalization scheme, but does hot use the 
expansion in powers of the charge. 
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also when more than one momentum is off the mass 
shell, in accordance with the conjecture described above. 

On the basis of that conjecture, we can argue for the 
existence of the integrals of the last two sections. Since 
they are at most logarithmically divergent in perturba­
tion theory, they will become convergent since the gain 
in convergence discussed above for the vertex, which is 
at least by powers of logarithms can be expected 
sufficient. 

It seems that the arguments collected here lend sup­
port to the view that the strength of singularities in 
renormalized perturbation theory is an upper bound, 
which is, in fact, not reach~d by a rigorous solution of 
the axiomatic scheme, at least as far as the .1Ret'­

amputated functions are concerned. The singularities 
(or vertex divergencies) in perturbation theory seem to 
be characteristic to that method, which is strict in 
locality but loose in unitarity. 

6. OUTLOOK 

The results of the foregoing sections can be utilized to 
amend present methods to derive analytic properties of 

FIG. 14. Analysis of the scattering amplitude 
A+A ->A+A+a+a. 

observable quantities because structure analysis permits 
us~ of locality and the completeness condition more 
efficiently than techniques presently available do. 

This is most easily seen by comparison of field theo­
retical proofs of analytic properties of scattering ampli­
tudes with proofs for potential scattering. Lehmann's 
proof60 of cosO-analyticity for fixed total energy gives as 
analyticity region an ellipse, which is analogous to the 
ellipse obtained by Khuri 61 for potentials that are local 
and decrease exponentially, but are not restricted other­
wise. Blankenbecler et at. 62 have shown that the initial 
ellipse can be successively enlarged, if the potential is a 
superposition of Yukawa potentials, by iteration of the 
integrated Schrodinger equation, whereby the Born 
series is generated. 

We may compare the Schrodinger equation to' the 
inhomogeneous Bethe-Salpeter equation of Fig. 7 and, 
especially, Eq. (69). Actually, the ladder approxima­
tion of the Bethe-Salpeter equation was originally pro­
posed by Nambu63 as field theoretical analog of the 
Schrodinger equation and is known to lead to it in the 
nonrelativistic adiabatic approximation. In Lehmann's 

60 H. Lehmann, Nuovo cimento 10, 579 (1958). 
61 N. N. Khuri, Phys. Rev. 107, 1148 (1957). See also S. 

Gasiorowicz and H. P. Noyes, Nuovo cimento 10, 78 (1958). 
62 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B. 

Treiman (to be pUblished). 
63 Y. Nambu, Progr. Theoret. Phys. 5, 614 (1950). 

~ 
I 

FIG. 15. Analysis of A+.A -> A+.A, Eq. (106). 

proof60 of cosO-analyticity, the "Yukawa-type" nature 
of the "potential," namely that it is originated by the 
causal interaction of particles with known mass spec­
trum, is used only once, comparable to terminate the 
iteration mentioned in the foregoing with the first or, 
for the absorptive part, second Born approximation. 

As far as the dispersion relation for fixed momentum 
transfer 1.11 is concerned, for limited 1.11 the irreducible 
term in Fig. 7 has zero absorptive part in the unphysical 
region Iwl < (m2+.12)i, as follows from (77) with Yi=O, 
and therefore obeys a homogeneous dispersion relation. 
The reducible part, however, must be analyzed on the 
basis of its structure. Since it resembles, in its iterated 
form, a perturbation theoretical graph with, however, 
vertices of finite but, in comparison with the reducible 
functions, reduced extent (if, for instance, a further 
analysis like that of Fig. 12 is carried out), it can be ex­
pected that techniques developed for proofs of analytic 
properties of Feynman graphs can be adapted to the 
present situation. 

In the case of meson-nucleon forward scattering, 
Zimmermann64 has shown that already separating out 
the one-nucleon reducible part permits proving the 
dispersion relation and identifying the coupling constant 
in a simple way. 

These considerations, together with the remarks 
about a possible interpretation of perturbation theory in 
Sec. 4, might lead in the direction of Landau's66 recent 
method. The method proposed here has in common 
with this at least that all stable particles, without a 
distinction between "simple" and "composite" ones, are 
treated equally. Here, this is clearly based on Zimmer­
mann's66 technique of ascribing local field operat<>rs to 
all stable particles. 

This leads us to the question why it is obviously 
sometimes advantageous to treat an unstable particle 
like a stable one, since a neglect of the decay interaction 
cannot be spoken about when bare interactions do not 
appear at all. A justification is desirable because even 
apparently stable particles might be unstable with a 
long lifetime. 

Of course, we are not in a position to give anything 
else than a very crude qualitative argument. Assume a 

FIG. 16. Analysis of a+a -> A+.A, Eq. (107). 

64 W. Zimmermann, Nuovo cimento 13, 503 (1959). 
6& L. D. Landau, Nuclear Phys. 13, 181 (1959). 
66 W. Zimmermann, Nuovo cimento 10, 597 (1958). 
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mode167 with stable particles A, antiparticles A, and 
lighter stable particles a, and antiparticles ii, and as well 
A - as a-conservation. The scattering amplitude A + A ~ 
A + A +a+ii can be structure-analyzed as shown68 in 
Fig. 14, where i denotes one- and two-particle irre­
ducibility. Furthermore, the integral equations de­
scribed by Figs. 15 and 16 are written symbolically as 

and 
Y=Yi+YiX+ZiY, 

(106) 

(107) 

respectively, where integrations over the relative co­
ordinates are implied. If Zi can be neglected, we obtain69 

Y= Y;[1-Xi- Y iTY iJ-l 

= Y;[1- X ;]-1[1- Y iTY i(1-X i)-IJ-t, 

which gives the final-state interaction in the middle 
graph of Fig. 14. If at some momentum in the energy 
region between 2mA and 2ma Xi, being there a hermitian 
operator, having (for instance in the zero angular mo­
mentum channel) the eigenvalue one, with Y iTY i being 
there a small but, of course, nonhermitian operator, a 
resonance, giving rise to a clean decoupling of the pro­
duction and the decay process, will appear. To a pair of 
two a-particles in strong correlation to each other in a 
large timelike distance only this resonance, phenomeno­
logically described as an unstable particle, will give a 
measurable contribution. 

It is clear that the consideration given here for two 
end lines also applies to a pair of interior A, A-lines 
(more precisely, an interior fourpoint vertex) though the 
advantage of using the unstable particle as a substitute 
for that pair will be limited to certain energy regions. 

The explanation given here is not new and does not 
give a hint why resonances that are actually observed 
are so sharp. However, from a fundamental point of 
view a hierarchy of interactions, strong and weak ones, 
is not much easier to understand. 

The structure analysis as presented in this paper is an 
off-shell formalism. We expect that it will be possible to 
reduce it, by dispersion-theoretical methods, at least 
partly to an on-shell formalism. It seems to us that on­
shell methods, being beset with the problem of un­
physical and high-energy regions, can only be understood 
and adequately handled with a prior comprehension of 
the underlying off-shell theory, unless a direct approach 
to the causality problem of the S matrix has been found. 
Moreover, the technical difficulties of unphysical regions 
might in some cases become so unwieldy that a complete 
reduction to the mass shells is no longer advantageous. 

67 We do not choose a more realistic model in order to avoid the 
impression of an allusion to a quantitative applicability of the 
following reflections. 

68 The circles denote functions and not functionals. The same 
simplification ·as in Figs. 11, 12, and 13 with respect to lines and 
earliest coordinates are made. 

69 The less simple considerations of Sec. 3 in a similar case are 
not needed here. 
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APPENDIX A 

Elimination of the Two-Particle 
Reducibilities (Section 3) 

We insert (68) and (60) on the left and also on the 
right-hand side of (44), always exhibiting the reduci­
bility between x, y and z, u nearest to x if there is any. 
The result is 

_ 1 __ __ 
(R x • yzu i)+-r i(x,y12)(R12 , .u)+r i(xl,y2)(R2,lzu) 

2 

1 
- -r(z,u12)(RI'l., xy i) - r(z1 ,u2) (R'l., I xy i) 

2 

=i([Rx,yu i,RzJ)+i([Rx,u,Rz,yJ) 

i 
+-[([Rx, y i,RI2i])+([R."RI2,y iJ) Jr(z,u12) 

2 ' 

+i[([R."yi,R'l.,I i J)+([R x,R'l.,Iyi])]r(z1,u2) 

i __ 
+-r i(x,y12)([ R I2 ,R.]u) 

2 

where all one-particle reducible terms are neglected. 
The first two brackets on the right-hand side (rhs) of 

(A.1) have the property fJ defined in Sec. 3. For such 
brackets we define the operations [ Ji and { } i by the 
integral equations70 

70 The index c of the anticommutators denotes the connected 
part, obtained by subtracting the disconnected part, which is, e.g., 
2(Rx, yu'>(R,> for (A.2b). 
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1 
([R",u,Rz,yJ) = -([R ""r,R2, yJ i)( {R1,u,R.,2}) 

2 

which correspond to Figs. 8 and 9, since for two 
operators A, B that commute with the operators C, D 
the equations 

1 1 
[AC,BDJ=-[A,BJ{C,D}+-{A,B}[C,D] (A.4a) 

2 2 
and 

1 1 
{AC,BD} =-[A,B][C,DJ+-{A,B}{C,D} (A.4b) 

2 2 

hold. The structure of (A.2) and (A.3) is very similar to 
that of (68) and (70). We defer the discussion of (A.2) 
and (A.3) to the end of this appendix. 

The brackets in the third and fourth term on the rhs 
of (A.l) do not yet have the property d, since they 
contain Rui instead of Ru' etc. By using (72) we write 

([R""yi,Rr2 i J) 
1 

= -([R""11 i, (RaRi) J)r;(12,34) +([R"" y i ,RniJ) 
2 

1 
=-([R""yi,(RaRi)])r.(12,34) 

2 

and 

([R""Rn, y iJ) 

1 

1 
+-([R""1Jai,RiJi)({Ra,Rn,4 i}) 

2 

1 
+-({R"" ua i,R4} i)([Ra,RI2,4i]) 

2 
+([R""yi,Rpd i) (A,S) 

= '2([R x, (RaR4) y])r i(12,34)+([R""Rn, IIi]) 

1 
=-([Rx, (RsRl,) IIJ)ri(12,34) 

2 
1 

+-([RX,3,R4,y]i)({Ra,Ru,4'}) 
2 

1 
+-<{R""a,R4,1I} i)([Ra,Ru,4 iJ) 

2 
+([R""RI2,y'Ji), (A.6) 

where the last terms in (A.S) and (A.6) are defined by 
these equations, since the other irreducible brackets 
have been defined by (A.2) and (A.3). The meaning of 
the terms separated out first is explained by 

with differentiations as in (43), as follows from the 
sense in which (72) was understood. The differentiations 
of (R""yi) are contraction differentiations and as such 
again defined with the help of (72). We shall see later 
that ([R""R2.IlI iJi) and ([RX,y"i,R.Ji) are closely related. 
The brackets in the fourth term on the rhs of (A.1) are 
obtained from (A.S) and (A.6) by the replacement 
Rf2i -+ R2,ri • 

Equations (A.S), (A.6), and the two equations just 
described give upon use of (60), (72), and the equation 
for R2,Ii corresponding to (72), for the sum of the third 
and fourth term on the rhs of (A.l), 

z 
+-[({R x , yf i,R4} i)+({R""a,R4,y} i)J 

2 

x[ ([Ra,R"u4J)-~([Ra,(R5Rs)4J)r(Z,US6) ] 

1 

+-[([Rx,y i,Rr2 i})+([R x,RI2, II iJi) ]r(z,uI2) 
2 

+i[([R"', 1I i,Ru iJi)+([R""R2,ry i]i) Jr(zl,u2). (A.7) 

For the terms containing the products RsRs or RaR4 
we define in the usual way, 

([R""lIi,(R6RS)]) 

1 _ 
=-([R"" ya:i,RiJ i)( {Ra, (R5RS)4}) 

2 -
1 _ 

+-({R""lIli,Rd i)([R3, (RsRif)4J) 
2 

+<[R"'Io,i,(R~6)J) (A.8) 
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and 

([Rz, (RsR~)!I]) 

1 
=-([R",.!,Ri.!I]i)({Rs,(Rl)RilM) 

2 
I 

+-({Rx.3,R4.!I} i)([Rs,(RsRil)4]) 
2 

+([Rx,(Rl)Re)y]i) (A.9) 

since the lhs brackets have, because of the amputation 
of the one-particle reducibilities (after the commutator 
has been worked out, of course), the property £f. The 
other irreducible brackets have been defined in (A.2), 
(A.3). The interpretation of these decompositions 
follows the pattern discussed at the end of this appendix. 

The remaining parts of the first two terms of (A.7) 
can be combined with (A.2a) and (A.3a), whereupon the 
last brackets change into ({Rs,Rz.4} u) and ([Rs,Rz.4]u), 
respectively. 

For the coefficient of the penultimate term on the 
right-hand side of (A.I) we hav.e from (19) and (18) 

1 I 
+-(R1.2,Rz},,+-{R2.1,R.}u, (A.I0) 

2 2 

If we furthermore use (77) for the last term in (A.7), 
the first term on the rhs of (77) cancels the last term on 
the lhs of (A.I), and the second term cancels the second 
and third term on the rhs of (A.IO). 

Let us collect what remains of (A.I) upon insertion of 
(A.7) to (A.1l), (76), (77), (A.2a) and (A.3a), 

i 
(Rx.lIZ1/) =-[([Rx.yli,Rz]i)+([Rx.I,R'1. yT)] 

2 

. [({ R1,Rz.2}u)- 2r(zl,u2)] 

i 
+-[({Rx.Yli,Rz} i)+({Rx.I,Rz.y} i)] 

2 
1 _ 

X ([R1,R •. 2]u) +-r i(x,y12)( {R1.2,Rz } u) 
2 

+ir ;(xl,y2)([Rz.1,R2]u) 

I 
- -[ ({ Rx,RI.'i.Y i} i)+( {R x. y i,RI,2i} i) ]r(z,uI2) 

2 

I _ 
+-Xi(xI2,y)r(z,uI2) 

2 
+ Yi(2x,lyJr(zl,u2). (A.12) 

In the third term on the rhs, we have from (77) 

whose first term cancels, upon insertion into (A.1), the ri(x,y12) = ri(2,xyl) +i([R x. y i,R:2,I iT) 
second term on the lhs of that equation. For the last ' 
term in (A. 1) we use (18) and obtain +i([Rx,Rz.llli})+i([Rx.I,Rz.y]i) 

i[R2 •1,Rz]u =R2.1zu- R •. 21u-i[R2,Rz.l]" (A.11) 

whose first term cancels the third term on the lhs 
of (A.I). 

We now define Xi by (76), which was set up in 
analogy to (A.I0) where, however, a moment's thought 
should be given to the terms containing R 1R2• They 
arise from the need of adding to, e.g., ([Rui,RxjJi) 
those terms where, before the irreducible commutator 
was worked out, the first factor was disconnected be­
tween 1 and 2. Without that term, the full analogy 
between (76) and (79) would have been spoiled since 
R12i contains only between 1 and 2 connected terms, in 
contrast to R 12• This also explains why such additional 
terms do not appear in Y, :V, Z, It, but do in U. All 
irreducible brackets in (76) have either already been 
defined earlier, or are defined by the anticommutator 
equations analogous to (A.S), (A.6), etc. When (76) is 
used in the penultimate term of (A.7), the first term on 
the rhs of (76) cancels the fourth term on the lhs of 
(A.l), and the second and third term cancel the second 
term on the rhs of (A.11). 

If (76) would have been written with unamputated 
1, 2, Xi would have little chance to vanish because on 
the rhs 1 and 2 occur in varying positions, and the 
conversion of retarded into advanced end reducibilities 
would have given additional terms. 

The first three terms on the rhs do not contribute in 
(A.12) because of the inverse time order of 1 and 2 in 
the two factors.71 The fourth and fifth term cancel the 
first term on the rhs of (A.12). In the fourth term on the 
rhs of that equation we use (78), all irreducible brackets 
of which have been defined earlier. The second and third 
term on the rhs of (78) cancel the second term on the 
rhs of (A.12), whereas the fourth and fifth term combine 
with the fifth term on the rhs of (A.12) to give a 
coefficient 

i([Rz.1,R2]u)- r(z,u12) = i([R.,R2.1]u), 

which results in a vanishing term due to inverse time 
order.71 Taking account of (72) and combining with (19) 
the coefficients of yi we are left with (80). 

The Eqs. (81), (82), (83), (88) are obtained in a 
similar way, where also (20) and (21) have to be used. 

Let us discuss the operations [ Ji and { } i defined in 
(A.2), (A.3), (A.S), (A.6) , (A.8), (A.9), and analogous 
equations. As an example we chose (A.3) and form by 

71 This argument only holds, of course, if the factors are not too 
singular at equal times. On the basis of the conjecture of Sec. 5, 
concerning the possibility of multiplying (48) with the step func­
tion 9(x-y), it can be shown that the argument of the text is 
correct. 
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linear combination using the formula 

(R x.uR z.lI)c= «Rx.rR'J..,,)i)(R1•uRz.2) 

(Rz.IIR x.u)c= «R'1.."Rx.r)i)(Rz.~l, ,,), 

(A.13) K 1 ... N = L L (l!m!n!'" )-1 
and 

whereof we need only consider the first relation. 
From (39) and (41) we have 

(Rx.u')=(Rx.ri·')(RI, ,,)==AM 
and 

By keeping in mind (43), which was a consequence of 
(14), we rewrite the lhs of (A.13) symbolically as 

where the small greek letters indicate differentiations of 
the capital symbols, integrations as in (43) being under­
stood, and c means "connected" as in (A.3b). By 
rearranging the rhs we obtain 

(Rx, "Rz,y)c 
= (e,m'-1)AA"el'I"MM' 

+[eaa' (eal" -1) (ea'''-1) + (eaa' -1) (eal" -1) 

+ (e,ra' -1) (ea'''-1) ]AA' e"'" MM' 

+AA'(el'l"-1)MM'+[A (ea'l'-l)A' 

+A'(eal"-1)A]el'l"MM'. (A.14) 

The first term is the first contribution to the rhs of 
(A.13), namely when both factors in «Rx.rR2.,,)i) are 
one-particle irreducible. The second term involves 
"crossing" and necessitates a further splitting of M, or 
M', or both: 

M-'>BM, M'-,>B'M', p,-'>f3+p" p,'-,>f3'+p,'. 

The factor el'l"MM' always remains and gives the factor 
(R 1• uR z•2) in (A.13). There are terms that upon these 
new splittings do not involve "crossing differentiations" 
of M or M', and thus immediately contribute to 
«R: •. rRz.'J.) i). The terms that involve crossings are 
treated in the same way in the next. step. The two re­
maining terms in (A.14) produce the one-particle 
reducibilities at one line, or at both lines, respectively, 
and are furthermore treated as before. Especially, the 
penultimate term has, apart from the factor AA', the 
same structure as we started from. 

We thus see that (Rx.IRz,'JY) never gets a two­
particle reducible contribution, and that the factor is 
always (R1•uR z ,2)' One can also show that both end 
lines become 1+A+AB+ABC+··· and 1+A'+A'B' 
+A'B'C'+· . " respectively. Not only these expansions 
break off in any finite order of J, but also the entire 
expansion of «Rx.rRz,'iY) for any finite momentum 
transferred, as was remarked in Sec. 3. 

Still some more summations can be carried out. On 

perm part 

. (1 +K)K1 ... 1i(1 +K)K(l+l)"'(I+m) i(1 +K) 

·K(l+m+l)"'(l+m+n) i(1 +K)· . ·K ... N i(1 +K) 

derivable from (1 + K)(1- Ki) = 1, where the indices 
mean functional derivatives, the partitions are those 
that give N=l+m+n+···, with 1, m, n· .. natural 
numbers, and the permutations are the N! of the indices, 
one can show that «R x,I,R'1..ii) i) has the structure shown 
in Fig. 10 as explained in Sec. 3. The difference between 
the expansion obtained before and the final one just 
discussed is that in the latter all alined undifferentiated 
one-particle irreducible parts on the two chains have 
been summed up. We omit the strictly elementary, but 
tedious inductive proofs of these statements. 

All other irreducible brackets, including those in­
volving (RaR4), can be similarly obtained in an explicit 
form. This way it is also found that, e.g., ([Rx,R'J.,Iyi]i), 
as defined similarly to (A.6), and ([R.f,y"i,Rz]i), as 
defined by (A.2), become identical upon renaming the 
indices. 

We have here obtained «Rx,uRz,y)i), etc. by explicit 
construction. However, this does not necessarily mean 
that the solutions of (A.2), (A.3) are unique. If they are 
so, it will be possible to write them in a form that is 
analogous to (75), due to the nearly identical structure 
of (A.2), (A.3) with (60) etc. From such a form, together 
with the similar formulas that are then derivable for the 
other irreducible brackets, it can be proved that the 
sum of the brackets on the rhs of (80) has the same 
retardedness properties as the irreducible functionals 
have as was mentioned in Sec. 3. 

APPENDIX B 

One-Particle Propagator with nonCDD 
Zeros (Section 5) 

Assume j(z) to have nonCDD zeros. These will be 
zeros at points Zv, zv, Imzv>O, p= 1·· ·N, and zeros on 
the various parts of the real axis. Those real zeros where 
the real part has positive slope were classified as CDn 
zeros, so the nonCDD zeros will give negative slope. 
Both types of zeros can coincide to give zero slope but 
will, in general, lie apart. We count every zero as often 
as its multiplicity requires. The real nonCDD zeros will 
be at XI" p,= 1·· ·M. We define 

N Z-Zv z-zv 

j(z) = jr(Z) II ----
,~l m2- z, m2- Zv 

X II --" == jr(Z)P(Z), 
M (Z-X )2 

I'~l m2-x" 
(B.1) 
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where Nand M can be assumed to be infinite72 but will 
actually turn out to be finite since at most a polynomial 
increase of fez) in infinity is permitted. fr(z) has only 
CDD zeros and at the x~ poles with negative residuum. 
From (97) and (98) we obtain 

Im( - jr(z)-I) I z_x+oi=7rfi(x)p(x). (B.2) 

- fr(z)-1 is analytic in the upper z half plane and has, 
because of P(x) 2::0, nonnegative imaginary part (in­
duding possibly delta functions with positive coeffi­
cients) along the real axis. A theorem on such functions73 

says that Im( - jr(z)-I) either is positive in the upper 
half plane or goes at least linearly to - 00 in some direc­
tion. One easily proves that this leads to zeros of 
- jr(z)-1 excluded by our construction of that function. 
Therefore the former statement holds and allows to use 
the representation74 

f
+OO l+zt 

- jr(-z)-I=A+Bz+ -du(t) 
-00 t-z 

with A real, B real nonnegative, and u(t) a real non­
decreasing measure. The condition jr(m2)-1=0 allows to 
rewrite this as 

f
+'" (1 +t2)du(t) 

- jr(z)-I= (z-m2)B+(z-m2) 
-00 (t-z)(t-m2) 

or, with the help of (B.2), 

i
oo fi(t)p(t) 

- fr(z)-I= (z-m2)B+ (z-m2) dt 
4m2 (t-z)(t-m2) 

Cx + (Z-m2)L , (B.3) 
(Xx- z)(Xx- m2) 

7' In this case the convergence of the products follows from the 
at most exponential growth of fez) in infinity, its reality for real z, 
and properties of Blaschke products, see, e.g., R. Nevanlinna, 
Eindeutige Analytische Funktionen (Springer-Verlag, Berlin, Ger­
many, 1953), Chap. VII. 

73 This is an adaption of the Phragmen-Lindelof theorem, see 
footnote 72, p. 44. 

74 See, e.g., J. A. Shohat and J. D. Tamarkin, The Problem of 
Moments (American Mathematical Society, New York, 1943), 
p.23. 

where Cx>O and Xx are CDD zeros. The condition 
(m2-z)jr(Z) I z~m2= 1 gives 

i
'" fi(t)p(t) C}' 

.B+ dt+L---
4m' (t-m2)2 (x}, _m2)2 

1. (B.4) 

Equations (B.3) and (B.4) give (102) and (103) if 
nonCDD zeros are absent, i.e., pet) == 1. The behavior of 
j(z) in infinity is 

j(z) ~ P(z)· (m2- Z)-I. B-1 if B,eO, 

and if B=O 

[i
OO fi(t)P(t)dt ex ]-1 

j(z) ~ P(z) + L--
4m2 (t-m2) X2-m2 

if the sum and integral exist, or 

[ i
'" fi(t)P(t)dt 

j(z) ~ P(z) (m2-z) 
4m2 (t-m2)(t-z) 

C" 1-1 

+ (mLz)L-----
(x,,- 2) (Xx -m2) 

otherwise, which will be P(z) times a factor that goes to 
zero not as strongly as Z-l. This shows the way in which 
the behavior of j(z) in infinity and the number of 
nonCDD zeros are strictly correlated. 7li 

If I> 1 in (105), but fi(t), considered as primary 
quantity, vanishes so strongly in infinity that integrals 
as in (B.4) converge, it might be possible to satisfy 
(B.4) by choosing zeros of pet) in the region where fi(t) 
is not small. In this case a subtracted form of j(z) is 
defined by (B.l) and (B.3). If, however, I> 1 and fi(t) 
is not O(t- l ), no such possibility exists. 

If fi(t) is considered given, jr(Z) will only have CDD 
zeros at freely chosen points, and the nonCDD zeros 
determined by P(z) can be chosen real and positive. 

75 This was recently shown for the absence of nonCDn zeros by 
S. Aramaki, Progr. Theoret. Phys. 22, 485 (1959). 
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On the Analytic Properties of Partial Wave Amplitudes in 
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A new proof is given of the dispersion relation for the lth partial wave amplitude when the potential is of 
the Yukawa form or (by obvious extension) a suitable linear combination of such forms. The requisite 
analyticity properties are obtained by rewriting the integral equation for the quantity fl(k,r), which is 
related to the I-wave amplitude, as a Volterra equation on a finite interval in which the contribution from 
the asymptotic part of the integral is absorbed into the inhomogeneous term. The Born series for the in­
homogeneous term is analytically continued termwise into the cut complex-wave-number plane and the 
uniform convergence of the series is then established utilizing approximations which apply in the asymptotic 
region. The properties of fl(k,r) then follow from a well-known theorem on Volterra equations. 

I. INTRODUCTION 

I N a preceding paperl one of the authors presented a 
derivation of the Mandelstam representation for 

Yukawa potential scattering. In establishing the requi­
site analyticity character of the scattering amplitude 
for infinite complex wave number, it was necessary to 
proceed via an investigation of the behavior of the 
partial wave projections. This investigation was con­
ducted rigorously only for the 1=0 wave, but an 
analysis for higher 1 has been given by Martin.2 •3 

While previously the knowledge of partial wave proper­
ties assumed an auxiliary character, examination of the 
field theoretic applications of the Mandelstam repre­
sentation4 suggests that it be regarded as of primary 
significance. In the present note we shall present a new 
derivation of the lth wave dispersion relation for 
Yukawa potential scattering which provides consider­
able clarification of the mathematical difficulties in­
volved. In particular it will be shown that the required 
analyticity properties depend only on the behavior of 
solutions of the radial equations in regions where the 
complexities associated with 1>0 disappear. 

II. STATEMENT OF THE PROBLEM 

The radial Schrodinger equation for the lth partial 
wave ¢/(k,r) corresponding to a potential VCr) is 

where h= 2m= 1 and k is the wave number. ¢I(k,r) 
obeys the boundary condition ¢/(k,O)=O, but may be 
conveniently expressed in terms of a solution jl(k,r) 
satisfying the asymptotic boundary condition 

jl(k,r) ----; exp[ -i(kr-!hr)J, r ----; 00. (2) 

In fact, 

¢I(k,r)= (-iZ/2ik) (21+1)jl-l( -k) 
X {f/( -k)jl(k,r)- (- )Ijl(k)jl( - k,r)}, (3) 

where 
(2kr)1 

jl(k)=lim --jICk,r), 
r~O (l,l) 

(l+m)! 
(l,m)=----. 

(l-m)!m! 
(4) 

One then obtains for the asymptotic form of ¢l(k,r) 

'1 
r-+oo ~ 

¢I(k,r) -----'> -(21+ 1) exp[iol(k)] sin[kr- M'n+Oz(k)] , (5) 
k 

with 
(6) 

In the present study we shall investigate the analytic 
properties of jl(k) for the Yukawa potential 

V(r)=Xe-~r/r. (7) 

This will then enable us to write a dispersion relation 
for the l-wave scattering amplitUde 

AI(k)= (2ik)-l[exp[2io l (k)J-IJ. (8) 

III. ANALYTIC PROPERTIES OF h(k) 

In this section it will be proved that (A) h(k) is an 
analytic function of k in the entire k plane excluding a 
branch cut (denoted n) which consists of the half-line 
k=ip./2 ----; ioo. 

Statement (A) as restricted to Imk<O is well known 
for a very wide class of potentials including the Yukawa 
potential. In fact when VCr) satisfies 

f"'r[V(r)[dr<oo, f"'r2 [V(r)[dr<00, 
o 0 

* Supported in part by the U. S. Atomic Energy Commission. it has been shown5 that jl(k) is analytic in Imk<O and 
1 A. Klein, J. Math. Phys. 1, 41 (1960). 
2 A. Martin, Nuovo cimento 14 (403) 1959. 
3 A. Martin, Nuovo cimento (to be published). Related work 5 R. Jost and R. Newton, Nuovo cimento 1, 590 (1955). (This 

has been carried out by R. E. Peierls (preprint). reference contains a plethora of detail about analyticity properties 
'G. Chew and S. Mandelstam, Phys. Rev. (to be published). in Imk~O and also references to previous papers on the subject.) 
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approaches unity as I kl ~ 00. The zeros of jl(k) are 
the eigenvalues of (1) and may occur only for k= -iK 
with K>O. Since neither k=O or k= -ioo can be an 
accumulation point of zeros of jl(k),5 the analyticity of 
jl(k) in Imk<O implies that the number of eigenvalues 
is finite. 

It is noteworthy that only the properties of jl<';) in 
Imk ~ ° are needed to establish the Levinson theorem 
and the Levitan-Gel'fand formalism5 for the construc­
tion of potentials from phase shifts and bound-state 
data. On the other hand, the derivation of a useful dis­
persion relation for Al(k) will require an excursion into 
the murkier reaches of the upper half-k plane, where 
the assumption of Yukawa-like behavior of the poten­
tial becomes crucial. 

It is convenient to introduce the function h1(p) 
related to the spherical Hankel function of the second 
kind 

hl(p) = -iphl(2) (p) = (l,l)1 (2p)IKI(p)e-ip, (9a) 

where K/(p) are polynomials of degree 1 in p: 

/ (l,l-m) 
Kl(p)= L ---(2ip)m; (9b) 

m9J (1,1) 

and to define the function 

trl (k,r) = [(2kr) II (l,l) Je ikr jl(k,r), (10) 
so that 

trl(k,r) ~ jl(k) as r ~ 0 

trl(k,r) ~ KI(kr) as r~ 00. (11) 

Equations (1), (2), and (10) imply 

trl(k,r)=KICkr)+ f'" SI(O)(k; r,r')VCr')trl(k,r')dr', (12) 

where 

0: r'~r 

(- )1(~)1 exp[ -ik(r'-r)] 
SI(O)(k; r,r') = 2ik r' 

X[hl(kr)h l ( -kr')· 

-h[(-kr)h[(kr')]: r'?-r. (13) 

Examination of (12) and (13) reveals that conver­
gence difficulties are encountered for Imk?- (p./2) be­
cause of the divergent factor exp[ - VL+ 2ik) (r' - r) ] as 
I k \ (r' -r) ~ 00, i.e., as I k I r' ~ 00 for finite r. On the 
other hand, the form of SI(O) (k; r,r') may be consider­
ably simplified for I k I r' ~ 00. This suggests that we 
rewrite (12) in the form 

;tl(k,r) = ~I(R) (k,r) 

R 

+ f gl(O)(k; r,r')V(r')trl(k,r')dr', (14) 
r 

where 

~1(R) (k,r) =Kl(kr) 

+ f'" gl(O)(kj r,r') V(r') trl(k,r')dr', (15) 
R 

and R>r is at our disposal. Since (14) is a Volterra 
equation on a finite interval, the Neumann series 
solution obtained from (14) satisfies6 

Itrl(k,r) I ~ I max ~1(R)(k,r') I 
r~r'~R 

xexpl max SI(O)(k; r,r')V(r') I (R-r). (16) 
r~r'~R 

Since SI(O) (k; r,r') vanishes like r' -r as r' ~ r and is 
analytic in k for finite I k I, it follows that I ;tl(k,r) I is 
bounded in k for k in some finite region K and O~r~R, 
provided that \ ~I(R) (k,r) I is likewise bounded. If in 
fact ~1(R)(k,r) were analytic in k for a closed region K 
and O~r~R, the Neumann series for (14) would be 
term-wise analytic and uniformly convergent on the 
contour of K thus implying the analyticity of trl(k,r) 
for kEK. 

In Sec. IV we shall establish the following: 
(B) Given Ikol >0, there exists C»1 such that for 
R=C/lkol, ~1(R)(k,r) can be analytically continued 
from the representation (15) on the real k axis into the 
entire finite k plane outside the circle I k I = I ko I ex­
clusive of the cut Q. 

The analytic continuations of trl(k,r) constructed for 
various R say C I I ko I and C I I kll clearly coincide for 
real k with I k I ?- max( I ko I, I k11), and hence throughout 
the common region of analyticity. Thus for all k with 
Ikl ?-Ikol: 

trl(k,O) = ~1(C/lkol) (k,O) 

C/lkol 

+ f SI(O)(k; O,r')V(r')tr,(k,r')dr' 
o 

j
C/1kl 

+ SI(O)(k; O,r') V(r') tr,(k,r')dr'. (17) 
o 

Hence the behavior as I k I ~ 00 of the continuation of 
tr,(k,O) constructed for a fixed R=CI\ko\ may be 
obtained from an analysis of 

lim ~t/lkl (k,O). 
IkJ -+ .. 

In Sec. IV we shall prove 

(C) lim 1~I(Cllkll(k,O)-11 =o(Xllnkl/lkl). 
Ikf -+ .. 

outside !1 

6 F. Riesz and B. Sz. Nagy, Functional Analysis (F. Ungar, New 
York, 1956), p. 147. 
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Then from the second line of (17), the Born series for 
5'z(k,O) approaches its zeroeth term, i.e., 

lim [5'z(k,O)-l[=O(X/lnk[/[k[). 
Ikl --+ 00 

outside fl 

Thus from (9) and (11) 

lim /l(k) = 1+0(X [lnk[ / [k [). 
I kl --+ "" 

outside n 

(18) 

(19) 

in (20) is an entire function of k and is conveniently 
rewritten 

f oe (r' )-2Z X exp( -w') 
R - Kl( -kr') dr' 

R R r' 

f oe (J.I)2Z ( k )e-
aR 

=R I' ~ Kl -~aR ~a. (24) 

Thus 

We have therefore reduced the proof of (A) to a proof foe 
of (D) and (C) which we shall next undertake. R 91(0) (k,r,r') V(r')Kz(kr')dr' 

IV. PROOF OF STATEMENTS (B) AND (C) 

We shall investigate the Born series for ~1(R) (k,r) ob­
tained by integration of (15) with (12). Each term 
consists of factors of the form fit" 9/°) (k; r,r') V (r') 
XKz(kr')dr' with R=r in all but the first factor. Note 
that all variables of integration exceed R. After some 
rearrangement we may write 

fOO 9z(0) (k; r,r') V (r')Kz(kr')dr' 
R 

KZ[ -k(d/dJ.l)]{ 
= e-2ik(R-r) Ao(k,r,R) 

Kl(-kR) 

f oo (r' )-n exp( -w') 
·R - KZ( -kr') dr' 

R R r' 

+XKl( -kr)Az(J.I,k,R)}, (20) 

where we have used 

and defined 

Ao(k,r,R) =eik(R-r)[ (- ) 1/2ikR](r/R)I 

X [hi (kr)h1 ( -kR)-h1( - kr)h1(kR)], (21) 
and 

(-Olf
OO (R I 

A I (J.I,k,R) =_. - eXP-ik(r'-R)-) 
2ik R r' 

X[h1(kR)h1( -kr')-h1( -kR)IzLCkr')] 

dr' 
Xexp( -W')-. (22) 

r' 

The form (20) is especially convenient for analytic 
continuation. It is shown in Appendix I that for real k, 

f oo e-aRda {J.I(J.L+2ik)}l 
AZ(J.I,k,R) = . 

I' a(a+2ik) a(a+2ik) 
(23) 

One observes that AZ(J.I,k,R) is analytic in k in the finite 
k plane exclusive of the branch-cut Q. The first integral 

Kl[ -k(d/dJ.l)] =Xe-2ik(R-r) ____ _ 
KZ( -kR) 

X f'" Al(r,R,k,J.I,a)e-aRda, (25) 
p. 

where 

Al (r,R,k,J.I,a) 

=~(:Y [Ao(k,r,R)Kl( -kaR/J.I)R(:Y 

+Kl( -kr)(J.I+2ik)Z/(a+2ik)I+l). (26) 

For [k[R»l, +Imk>O we obtain from (21) the 
useful approximation 

Al (r,R,k,J.I,a) 

",~(~)ZKl( _kr)[ __ l + (J.I+2ik)I]. (27) 
a a 2ik (a+2ik) 1+1 

The analytic continuation of (20) by means of 
(23) must now be applied to each term of the Born 
series for UR)(k,r). The second Born approximation for 
example is 

exp[ -2ik(R-r)] 
X2 KZ( - kd/ dJ.ll)P.l =p. 

/(z(-kR) 

xf'" exp( -aR)da[J.ll(J.lI+2ik)]Z 

1'1 a(a+2ik) a(a+2ik) 

X foe Az(r,R,k, J.I+a, {3+a)e-fJRd{3. 
I' 

The series becomes 

exp[ -2ik(R-r)] 
~Z<R)(k,r)=KzCkr)+-----­

KZ( -kR) 

00 

(28) 

xL: Xn+1B(,I)(J.L,k,r,R), (29) 
Il=O 
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where 

BI(n) (j.I,k,r,R) 
n 

=Kl[ -k(djdJ.tI)]l'j=1' II 
i=1 

j-I j-I 

(,uj+L: av)I(,uj+2ik+L: av)le-ajRdaj 

Xf.OO .=1 , V~1 
1" J J 

3 (L: av)I+I(2ik+ L: av)l+1 
v=1 v=1 

where 
j.lj=,u+O}I(j.lI-J.L) 

(30) 

To establish the convergence of (29) for finite I k I it 
suffices to prove convergence for the expression ob­
tained from (29) and (30) by the replacement 

[a]=smallest integer >a. With this replacement it is 
clear that since 

j 

L: av~ jj.l~ 2 Imk for all j~ No, 
11=1 

then 
j-I j-I 

(,uj+ L: av) (j.lj+2ik+ L: av) 
p=l 11=1 

j j 
~l. (31) 

(L: av) (2ik+L: av) 
v=1 v=l 

Now we note that if R is chosen such that ,uR is suffi­
ciently large, the principal contributions to the integrals 
over a and a;(j=No "', n) in (30) arise from a/'''j.I., 
11= 1, "', j. Furthermore, the principal contributions 
to the derivative dj dJ.L arise from the exponential 
exp( -j.lR). If we then choose R so large that these 
approximations and in addition (27) are valid, we 
obtain 

n 

I B(n~N°)(,u,k,r,R) I ~ const II 
i=No 

xl e-I'R IIKI(-kr) e-I'R 
(jj.lR) (2ik+ jj.l) (n+ 1)p.R 

X( __ 1 + 1 )1 ~C(NO,j.I,k,r) 
2ik 2ik+(n+1)J.L 

X[nl(n-No)l]-I 1_1-CI'RI", (32) 
J.L2R 

where C(N o,J.L,k,r) is bounded for finite r and finite I k I 
exclusive of fl. From (32) we may conclude that for 
finite k outside fl, Ikl ~ Ikol, R=Cjlkol and C suffi­
ciently large that the remarks following (31) are appli­
cable, (29) converges to an analytic function. It must 
be remarked also that C is to be chosen such that 
KI ( - kR) has no zeros for I k I R ~ C. This is of course 
possible for finite I. The proof of statement (B) is now 
complete. 

In Appendix II it is shown that the product of the 
left side of (31) for j= 1, 2, ... n is majorized by an, 
where a is a constant independent of k excluding an 
arbitrarily small band enclosing fl. Examination of the 
series (29) for R = C II k I then shows that C can be 
chosen sufficiently large that the remarks following (31) 
apply. One thus obtains: 

X n+I I BI(n) (,u,k,O,Cj I k I) I 
n+l foo Xda j 

~ I C / (J.L,C) I n+l II 
i=1 I' j j 

(L: a.) (2ik+ L: a.) 

(33) 

v=1 v=l 

where C z' (j.I,C) is a bounded function of j.I and C. The 
last factor is precisely that which is encountered for the 
case 1=0 and is easily shown to satisfy the inequality 
for large I k I : 

(
X lnlkl ),,+1 

~ . 
Ikl 

(34) iY roo Xdaj 

i=1 '" j j 
(L: av)(2ik+L: a.) 
v=l JI=l 

Substitution of (33) and (34) into (29) yields 

(
X lnl kl) 

lim ~1(C /I kl) (k,O) = 1 +0 --- , 
l~~side ~ I k I 

(35) 

which concludes the proof of Statements (C). 

V. CONCLUSIONS 

It has now been established that for a Yukawa 
potential the I-wave scattering amplitude Al(k) is 
analytic in the upper half k plane, except for a branch 
cut on the imaginary k axis extending from k= ij.lj2 to 
k=ioo and a finite number of poles, also on the im­
aginary k axis, corresponding to the bound states. The 
difference between A I (k) and its first Born approxima­
tion AI(O)(k) may then be shown to have the branch 
cut from k=iJ.L to k=ioo. Application of Cauchy's 
theorem to A1(k)-AI(O)(k) in the variable S=k2 with 
the contour of Fig. 1 produces the dispersion relation 

Al(si) - A 1(0) (s!) 

1 foo lmAl(s'!) 
=L: Cz;/(S-Sli)+- --,--

, 7r 0 S -s 

1 I-1'2 Im{A1(s'!)-A1(0)(s't)} 
+- U , , 

7r -00 S -s 
(36) 



                                                                                                                                    

278 DANIEL I. FIVEL AND ABRAHAM KLEIN 

FIG. 1. Contour for Cauchy integral for Az(s!). 

where 

AI(O)(s!)= (-A/2S)QI[Cu2+2s)j2s], 

Ql (v) are Legendre functions of the second kind 

QO(JI)=~ In(J1+1/J1-1) 

(1+ 1)Q/+1(J1) = (21+ 1)vQl(J1) -IQI_1 (I') 

. and C; are residues at the bound state energies Sli. 

APPENDIX I 

1 foo (r)1 I (l,m) (l,n) 
Al(k,/.Io,r)=- - L: 

2ik r r' m,n=O (2ikr)m(2ikr')n 

X {( -1)n- (_1)m exp[ -2ik(r'-r)]} 

exp( -w') 
X----

r'dr' 
(Ll) 

If we introduce (1.2) into (1.1) and simplify, we obtain 
from those terms arising from the first term of (1.2) 

f OO e-arda {P.(P.+2ik)}1 1 (l+m) 

I' a(a+2ik) a(a+2ik) Eo m 

X {ym(l_y)I+l+yl+l(1_y)n} , (I.3) 

where y= (-a/2ik). The summation in (1.3) is unity 
for arbitrary y. The contributions to (1.1) from the 
second term of (1.2) yield a polynomial 

21 21-. 

L: L: G.J",·(p./2ik)i, 
.=1 i=O 

in which the coefficients are various sums of products of 
binomial coefficients all of which are readily proven to 
vanish. Thus 

(1.4) 

APPENDIX II 

The proof of the following inequality is required in 
the text: 

v=l )1=1 

for arbitrary k excluding 0, where a is a constant inde­
pendent of k. For 2 Imk::;p. the left side is majorized by 
unity (obtained by setting aj=p. for all j). Now suppose 
2 Imk~p.. The left side of (ILl) can be written 

I p.(p.+2i~) IlJ (p.+,\j)(~+2ik+,\j) I, 
.\ n('\n+2zk) H .\j(2tk+.\j) 

(II.2) 

where 
If 2 Imk<p., successive integrations by parts yield j 

the relation 

JOO rm dr' CI 1 
- exp[ -2ik(r'-r)-w']- ear y 

r ,'n 1" 

(_1)n { f'" e-arda 
=--(/.Io+2ik)" (-l)mml The maximum of 

. n! I' (a+2ik)m+l 

max(n,m) 

+ L: (-1)X(p.+2ik)-X 
A =1 +min(n,m) occurs for 

.\ j= L aj~ jp.. 
J.I=l 

1

P.+2ik+'\il 

2ik+'\j 

2 
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and applying (a2+b2)t:::; lal+lbl one obtains 

IJL+2ik+
f i

!:::; 2(1 +_JL_) < 00 
I 2ik+fi 4(Rek) 

provided that IRekl ~E>O. The maxima of IJ.I(JL+2ik)/ 
[n([ n+2ik) I occur when [n=J.I and 

3 Imk+{ (Imk)L8(Reh)2}i 

2 

In the first case the value is unity. In the second case 

suppose first that Imk:::;NIRekl. where N»2v2. Then 

On the other hand, if Imk ~ N I Rek I then the second 
maximum occurs at [,,::2 Imk, where its value is 
majorized by 

J.I/2IRekl<00 if IRekl~E>O. 

Thus taking a=max(N/2, 4(1+JL/4IRekl) (11.1) 
follows. 
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I. INTRODUCTION 

T HE classical equations of the processes of mathe­
matical physics can be put in the form 

ut=T(u), (1) 

where u is a vector function of a space vector p, re­
stricted to a region R, and the time u=u(p,t). The 
operator T is in many cases a linear partial differential 
operator, in some cases a linear integral operator, and if 
we insist upon realism, a nonlinear operator. The steady­
state version is obtained by setting the vector Ut equal 
to zero. 

Since equations of this type usually have an infinite 
number of solutions, it is necessary to attach some 
further restrictions in order to single out a particular 
solution. To do this, we usually assign initial values, 

u(p,O)=v(p), pER, (2) 

280 
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and boundary values 

u(p,t) =W(p,t), (3) 

for pEE, the boundary of R. 
Problems of this nature have two types of difficulties 

associated, difficulties which are inseparably intertwined, 
those of analytic character and those of computational 
nature. Among the many methods which have been 
proposed is the theory of semigroups. The guiding ideas 
were first enunciated by Hadamard, and subsequently 
were systematically pursued by Hille and Yosida; see 
Hille and Phillipsl for a thorough exposition and many 
references. Classically, the semigroup concept has been 
exploited in the time domain. Our aim is to show that 
this basic method can be applied in a much wider area, 
using other physical variables of significance as semi­
group variables. 

If we use invariance principles in a systematic fashion, 
we shall derive not only new analytic formulations of the 
classical particle processes, those of transport theory, 
radiative transfer, random walk, multiple scattering, 
and diffusion theory, but, in addition, new compu­
tational algorithms which seem well fitted to the capa­
bilities of digital computers. Whereas the usual methods 
reduce problems to the solution of systems of linear 
equations, we shall try to reduce problems to the 
iteration of nonlinear transformations. 

Although we have analogous formulations of wave 
processes,2-4 we shall reserve for a second paper in this 
series a detailed and extensive treatment of this part of 
mathematical physics. 

Our interest in the field of invariance principles 
was aroused by the elegant and fundamental work 
of Chandrasekhar in the theory of radiative transfer .. 
His results, in turn, are generalizations of those of 
Ambarzumian who seems to have been the first to have 
consciously employed invariance principles in any sig­
nificant fashion. 6 Since then, in addition to our work, 
reference to which will be made later in the paper, 
there have been important contributions by Prei­
sendorfer,1·8 Ramakrishnan,9 Redheffer,LO and Ueno,u-l3 

1 E. Hille and R. Phillips, Functional Analysis and Semi-Groups 
(American Mathematical Society, Providence, Rhode Island, 
1957). 

2 R. Bellman and R. Kalaba, Proc. Nat!. Acad. Sci. U. S. 44, 317 
(1958). 

3 R. Bellman and R. Kalaba, "Invariant imbedding and wave 
propagation in stochastic media," Proceeding International Con­
gress in EM Theory (Academic Press, Inc., London). 

4 R. Bellman and R. Kalaba. J. Math. and Mech. 8, 683 (1959). 
6 S. Chandrasekhar, Radiative Transfer (Oxford University 

Press, New York, 1950). 
6 V. A. Ambarzumian, Compt. rend. acado sci. U.R.S.S. 38, 229 

(1943). . 
7 R. Preisendorfer, Proc. Nat!. Acad. Sci. U. S. 44, 320 (1958). 
8 R. Preisendorfer, J. Math. and Mech. 6, 686 (1957). 
9 A. Ramakrishnan, in "Probability and stochastic processes," 

in Encyclopedia of Physics (Springer-Verlag, Berlin, 1959), vo!' 
111/2. 

10 R. Redheffer, J. Rational Mech. and Ana!. 3, 271 (1954). 
11 S. Ueno, Ann. astrophys. 21, 1 (1958). 
12 S. Ueno (to be published). 
13 S. Ueno (to be published). 

In addition, there are some unpublished results due to 
T. E. Harris. 

Independently, functional equation techniques were 
introduced into the theory of branching processes, in 
particular, those arising in cosmic ray cascade theory 
and biological mutation, by Bellman and Harris,t4.l5 and 
Janossy.l6 Surveys of the many results obtained over 
the last ten years may be found in Harrisl7.18 and 
Ramakrishnan. l9 Also in the theory of dynamic pro­
gramming,20 in connection with the treatment of mini­
mization and maximization problems, we find a use of 
invariance principles and functional equations which is 
quite similar in spirit to what we shall find below in the 
treatment of purely descriptive processes. 

In place of beginning with an abstract formulation of 
particle processes and an abstract presentation of the 
principles of invariant imbedding, we shall start with a 
study of a particular process, neutron transport and 
multiplication. The difference in formulation between 
the usual approach and that furnished by "invariant 
imbedding," as we shall call our systematic application 
of invariance principles, will readily be seen. N everthe­
less, as we shall show, both are merely particular in­
stances of a general approach. 

Having gone through a spectrum of transport proc­
esses, steady-state and time-dependent, energy-inde­
pendent and energy-dependent, one-dimensional and 
multi-dimensional, unchanging medium and Stefan­
type, we shall abstract the basic ideas of invariant 
imbedding. 

Following this, we shall apply these techniques to the 
study of random walk and mUltiple scattering, to the 
study of radiative transfer and diffusion. Our treatment 
of these fields will be much briefer since much of what 
is done in the part devoted to neutron transport can 
easily be transcribed and applied in these other areas. 

In what follows, we shall pursue a purely formal path, 
leaving aside all questions of existence, uniqueness, and 
so on. What is interesting, however, is that our approach 
enables us to handle many of these questions in a much 
simpler and straightforward way than that furnished by 
the conventional road. 

Although we are in part motivated by a search for 
feasible computational techniques, we shall actually 
avoid any discussion of actual numerical techniques. In 
subsequent papers we shall treat these matters in great 
detail. Here we shall restrain ourselves to generalities. 

14 R. Bellman and T. E. Harris, Ann. Math. 55, 280 (1952). 
16 R. Bellman and T. E. Harris, Proc. Nat!. Acad. Sci. U. S. 

34, 601 (194&). 
16 L. J anossy, Cosmic Rays (Oxford University Press, N ew York, 

1950). 
17 T. E. Harris, Ergeb Math. (1961). 
18 T. E. Harris, "Some mathematical models for branching 

processes," Proc. Second Berkeley Symposium on Mathematical 
Statistics and Probability, 1951, pp. 305-328. 

19 A. Ramakrishnan, "Stochastic processes," Handbuch der 
Physik. 

20 R. Bellman, Dynamic Programming (Princeton University 
Press, Princeton, New Jersey, 1957). 
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The equations of invariant imbedding are related to 
the variational formulas of Hadamard type, expressing 
the dependence of the Green's function of a region upon 
the dimensions of the region.21 

Finally, let us note that no previous knowledge of the 
equations of mathematical physics is required. All equa­
tions will be derived from first principles, directly from 
the mathematical model of the physical process. 

II. NEUTRON TRANSPORT AND MULTIPLICATION 

1. Introduction 

Let us begin our journey with the examination of a 
number of intriguing mathematical problems which 
arise in the study of various aspects of neutron transport 
and multiplication. A consideration of some of the many 
different hypotheses that can be made will give us an 
opportunity to display the versatility of the theory of 
invariant imbedding. 

Our basic assumption is that a neutron is a point 
particle which is completely specified at any time by its 
direction of motion and its energy. These two properties 
determine its state. As the neutron traverses the medium 
within which the transport process takes place, it suffers 
certain changes of state (i.e., changes in energy and 
direction), as a result of interactions with the medium 
and with other neutrons. In addition, we have the rela­
tively new and very important phenomenon of fission. 
Certain interactions can result in an increase in the 
number of neutrons, the fission process. 

The probabilities of these events are measured by 
"cross sections" or "mean free paths." Occasionally, we 
shall talk in deterministic terms, and occasionally in 
stochastic terms, depending upon which is more con­
venient. The difference is more apparent than real, since 
the use of expected values in a stochastic model leads to 
a completely deterministic version based upon fluxes. 

Within the framework of a mathematical model con­
structed along these lines, a model we shall make more 
precise in the following section, we wish to explain and 
predict the phenomenon of criticality, and to determine 
the internal and external fluxes as functions of the 
spatial dimensions, the time, and other parameters. 
Problems of this nature are of great complexity from the 
mathematical side, and thus of even greater fascination, 
even when greatly simplified physical models are used. 
When more realistic assumptions are made, the analytic 
aspects become truly formidable, and the problem of 
obtaining numericalresuIts much more burdensome. 

It is not to be expected that recondite scientific 
questions will yield readily to any single approach. 
Rather it is to be expected that with the aid of a battery 
of methods, each of which chips away at some of the 
obstacles in our path, we can eventually clear a road 
which will take us some distance tQward our goal. 

The classical equations of transport theory can be 

21 R. Bellman and H. Osborn, J. Math. and Mech. 7,81 (1958). 

effectively applied in a number of cases. Approximate 
methods of various degrees of efficacy and associated 
results may be found in the book by Davison.22 Rigorous 
discussion of these techniques can lead to quite complex 
analysis; see for example the papers by Lehner and 
Wing,23-26 Jorgens,27 and Pimbley.28 

A number of questions can be studied by means ofthe 
mathematical theory of branching processes. TRe study 
of age-independent processes was begun by Harris,17.18 
and Everett and Ulam,29 independently of each other. 
Essentially it reduces to the study of the iteration of 
power series, with probabilistic overtones. The theory of 
age-dependent branching processes, based upon the 
systematic usage of functional equations, was begun by . 
Bellman and Harris,14.16 and independently by Janossy.16 
Detailed expositions with many references will be found 
in the monograph by Harris,17 the expository papers by 
Harris,18 and Ramakrishnan.19 

It is natural to construct simplified models in a situa­
tion characterized by severe mathematical difficulties 
and by physical complexity as well. The usual hope is 
that the exploration of these models will furnish valuable 
experience and that the understanding of these more 
transparent models will enable us to penetrate into the 
more obscure versions. However, as mentioned above, 
even apparently simple processes give rise to sophisti­
cated analysis. 

Furthermore, as we shall discuss repeatedly below, 
unless the problems are carefully formulated they can­
not be resolved in numerical terms in any straight­
forward fashion. Our objective in the pages that follow 
is to formulate a variety of transport processes in a way 
which will permit us to obtain numerical solutions with 
the aid of digital computers. As is often the case in 
mathematics and physics, a significant improvement in 
computational technique requires a new conceptual and 
analytic approach. 

It turns out that in the process of fulfilling one of our 
goals, numerical solution of problems, we obtain as 
byproducts a host of interesting and elegant analytic re­
sults, together with powerful methods for establishing 
existence and uniqueness theorems for the associated 
functional equations and for the classical functional 
equations of mathematical physics. Many of these equa­
tions are quite difficult to treat along conventional lines. 

22 B. Davison, Neutron Transport Theory (Oxford University 
Press, New York, 1957). 

2a J. Lehner and G. M. Wing, Commum. Pure and Appl. Math. 
8, 217 (1955). 

24 J. Lehner and G. M. Wing, Duke Math. J. 23, 125 (1956). 
26 G. M. Wing, "Transport theory and spectral problems," Proc. 

Symposium on Reactor Theory (American Mathematical Society, 
Providence, Rhode Island) to be published. 

26 J. Lehner, Commum. Pure APP!. Math. 9, 487 (1956). 
27 K. Jorgens, Commum. Pure App!. Math. 11, 219 (1958). 
28 G. Pimbley, J. Math. and Mech. 8, 837 (1959). 
29 C. J. Everett and S. Ulam, Los Alamos Scientific Lab., de­

classified documents LADC-534 (AECD-2164), May 6, 1948; 
LADC-533 (AECD-2165), June 11, 1948; and LA-707, October 28, 
1948. 
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Our principal tool will be the theory of invariant 
imbedding. Rather than attempt to define precisely­
what turns out to be more a state of mind than anything 
else, we shall first give a number of applications of the 
methods. Subsequently, we shall try to distill the 
essence of these. 

2. Simple Neutron Transport and 
Multiplication Process 

Let us now describe a simple mathematical model of a 
neutron transport process with fission. Subsequently, we 
shall add a number of interesting features such as colli­
sion between neutrons, energy and time dependence, 
and so on. For the immediate purpose of illustrating 
both how the classical approach is made and how in­
variant imbedding techniques are used, there are great 
advantages to using the simplest possible version pos­
sessing certain structural properties. 

As noted in the foregoing, we take the neutron to be a 
point particle, and we allow at the moment only one­
dimensional motion along a line, or part of a line. To 
simplify matters still further, we assume that there is no 
energy dependence. As this blithe, carefree neutron 
moves along the line, it may suffer a collision with the 
constituent elements of the line. Again to simplify the 
algebra, we suppose that only fission collisions occur, 
resulting in one neutron moving to the left and one to 
the right. This is the only type of interaction we shall 
allow between the neutron and the transport medium at 
the moment. Furthermore, we shall suppose that there 
are no neutron-neutron interactions. 

To make this verbiage precise, let us consider a finite 
interval [O,xJ (the reason for this apparently loose 
usage of x to designate an endpoint will be made clear 
subsequently; at the present, let us merely state that it 
is done with malice aforethought), a one-dimensional 
rod, with the following properties: 

a. When a neutron traverses an infinitesimal length A, 
in either direction, there is a probability crA+o(A)30 
that fission will occur. 

b. When fission occurs, two neutrons are pro­
duced, one going to the right and one to the left. 
Each of these has the same properties as the origi­
nal neutron. (See Fig. 1.) 

c. There is a probability 1-0-.1+0(.1) that no 
interaction occurs in A, which means no change in 
the direction of the neutron. 

d. When a neutron leaves the rod, it cannot return 
and it has no further effect upon the transport 
process. 

o y+ll. II 

FIG. 1. A rod of length x. 

30 The notation f(x)==o[g(x)] is used to mean limf(x)fg(x)=O, 
where the sense of the limit is usually obvious from the context. 

It would not be difficult to include absorption effects 
and collisions, which merely change direction, or to 
allow R neutrons R#2 out of a collision. Since these 
effects are treated subsequently in multiple scattering, 
radiative transfer, and random walk, we shall omit them 
here to keep the analytic details to an irreducible 
minimum. 

The quantity 0' is called the "macroscopic cross sec­
tion." Occasionally, we shall write it as 1/A, where A is 
called the "mean free path." If the rod is homogeneous, 
these quantities are constant, otherwise we write O'(y) 
and >.(y) for the quantities associated with the interval 
[y, y+AJ. 

We shall begin by considering steady-state neutron 
flux. The more general time-dependent case will be con­
sidered below. Let a unit flux of neutrons (that is, one 
neutron per unit time) be incident upon the right end of 
the rod, and let it be desired to determine the right and 
left fluxes at any internal point y, as well as the fluxes 
out at zero and x. We shall regularly refer to the latter 
as transmitted and reflected fluxes, respectively. 

Our first formulation will be the classical one, re­
sulting in simple versions of the linearized Boltzmann 
equation. 

Introduce the functions 

uR(y)=the expected number of neutrons going to the 
right at y per unit time, 

uL(y)=the expected number of neutrons going to the 
left at y per unit time. (1) 

To obtain differential equations for UR and UL, we 
apply simple conservation laws for the right- and left­
hand flows at y. These are input-output equations ex­
pressing the fact that what goes out is the sum of what 
comes in and what is produced. 

By virtue of our assumptions concerning the trans­
port and fission process and the elementary laws of 
probability, we obtain the equations 

UR(y) = UR(y- A) (1-o-A)+[uR(y)+uL(y) JO'A+o(A), 

UL(y) = uL(y+A) (1-crA)+[uR(y)+uL(y) JO'A+o(A). 
(2) 

If we pass to the limit as A ~ 0, we obtain the 
system of differential equations 

ui(y) = O'UL (y) , 

UL'(y) = -O'UR(Y)· 

The boundary conditions are 

UL(X) = 1, 

UR(O) =0. 

(3) 

(4) 

These express the fact that there is an incident flux 
of unit strength at the point x, and the fact that there 
is no incident flux at the point O. Observe a property 
which we shall repeatedly stress: The physical process 



                                                                                                                                    

284 BELLMAN, KALABA, AND WING 

Reflected 

I -flux 

... ---------+1 ___ -I _ W~~den' 
() &-6. 

FIG. 2. The fluxes under consideration. 

automatically leads to a two-point boundary value 
problem when formulated in the foregoing way. The 
reason for discussing this fact will be discussed in detail 
later. 

Finally, let us note that we can obtain the most 
general second order Sturm-Liouville equation from the 
foregoing process if we assume that right-hand motion 
at y has a different mean-free path than left-hand 
motion and that these mean free paths vary with y. 

3. Invariant Imbedding Approach-Metaphysical 

We now wish to formulate the transport process 
described in the foregoing section in different terms. Our 
approach will be based upon the theory of invariant 
imbedding. What we wish to do is to imbed the particu­
lar process considered above within a family of processes 
of similar nature. Although this appears to complicate 
rather than simplify the problem, its justification lies in 
the fact that there will exist simple relations between 
various members of the family which can be utilized to 
determine the characteristics of a particular member of 
the family. 

The fact that the structure, or anatomy, of a particu­
lar organism can be understood quite readily in terms 
of the comparative anatomy of a phylum is well estab­
lished in the field of biology. In chemistry, the con­
struction of the Mendelieff-Moseley periodic table of the 
elements was a decisive step forward. In mathematics, 
the method of continuity is one of the basic devices of 
analysis and geometry. It follows that in pursuing this 
approach, we are invoking a factotum of science. 

Consider the way in which an experimental physicist 
might study neutron flux in a rod. Starting with a rod of 
fixed length,he would measure reflected and trans­
mitted fluxes. Increasing or decreasing the length, 
measurement would be made of the corresponding 
quantities. The final data would consist of two curves, 
one the reflected flux as a function of the length of the 
rod, the other the transmitted flux. These would be 
functions of x, the length of the rod. 

Our aim here is to carry out the analytic equivalent 
of this program. In order for these concepts to be 
meaningful, we must find a way of relating the reflected 
and transmitted flux for a rod of length x with the 
corresponding fluxes for rods of different length. We 
propose then to consider the set of processes obtained 
by letting x assume any positive value. Our choice of the 
symbol x obviously presages this development. 

One advantage of this approach as far as reduction of 
data is concerned is that it permits a direct comparison 
of analytic results with experimental results. The ana­
lytic and computational advantages will be discussed in 

extenso after we have supplied some analytic content to 
this metaphysical discourse . 

4. Invariant Imbedding Approach-Analytical 

We begin by introducing the function 

u(x) = the expected number of neutrons reflected 
from [O,x] per unit time as a result of an 
incident unit flux of neutrons per unit time 
at x. (See Fig. 2.) 

Let us take .6. to be an infinitesimal. As the incident 
flux passes through the segment [x-.6., x], some of the 
neutrons cause fission and others pass through un­
affected to become incident upon [0, x-.6.]. When a 
fission occurs in.6. one fission neutron emerges at x, while 
the other becomes a part of the incident flux at x-.6.. 

Some of the neutrons reflected from [0, x- A] may 
cause fission while passing through [x-.6., x]. The 
products of this fission yield a contribution to the re­
flected flux at x and furnish another source of neutrons 
incident upon [0, x-.6.]. 

Fortunately, although the physical process and mathe­
matical counterpart are exceedingly complex if account 
of all fissions and reflections is taken, this intricate 
bookkeeping is unnecessary if .6. is an infinitesimal. All 
other events, apart from those taken account of above, 
have a probability of occurrence of order .6.2 or higher. 
Hence, they can be neglected in the derivation of the 
differential equations for the expected flux u(x). If we 
add up the various effects and their associated proba­
bilities, we obtain the equation 

u(x) = (1".6.[1 +u(x-.6.)] 
+ (1- (1".6.) [u(x-.6.) {(1- (1".6.) 

+(1".6.[1 +u(x-.6.) ]}]+o(.6.). (2) 

If we let .6. --'> 0, we derive the differential equation 

u' (x)=(I"[1+u2(x)], u(O)=O. (3) 

This first-order nonlinear differential equation is called 
a Riccati equation. As we shall see, this type of quad­
ratically nonlinear equation is characteristic of the 
equations derived by invariant imbedding techniques. 
In contrast, the classical equations are linear. Since we 
are describing the same process in different ways, there 
must be relations between the analytic descriptions. We 
shall obtain these later. 

A further useful function is 

v (x) = the expected transmitted flux per unit time 
as a result of a unit flux per unit time inci­
dent at x. 

The same reasoning as in the foregoing shows that v(x) 
satisfies the equation 

v' (x) = (l"U (x) V (x), v (0) = 1. (5) 

Observe that u(x) satisfies a nonlinear differential 
equation whose solution is determined by an initial con-
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dition as compared to the linear equations for UR(Y) and 
UL(Y), determined by a two-point condition. 

5. Connection between the Two Approaches 

It is clear that by suitable choice of y, we can obtain 
the functions u(x) and vex) from the functions UR(Y) and 
UL(Y). Thus, if we make the dependence upon x explicit, 
we have 

UR(Y)=UR(Yj x), 
(1) 

UL(Y)=UL(Yj x), 
and 

U(X)=UR(Xj x), 
(2) 

V(X)=UL(Oj x). 

Can we, however, derive the internal fluxes UR(Y) and 
VR(Y), given the functions u(x) and v (x) ? 

To accomplish this, we combine both viewpoints. 
Consider Fig. 3. 

To obtain a relation between UR(Y) , UL(Y), and u(y), 
we consider a source of strength UL(Y) per unit time at y. 
Then the steady-state relation is clearly 

(3) 
Similarly, 

UL(Y)=V(X-Y)+U(X-Y)UR(Y). (4) 

Hence, on solving for UR(Y) and UL(Y), we have 

UR(Y) =u(y)v(x- y)/[I-u(y)u(x-y)], 

UL(Y) = v(x- y)/[I- u(y)u(x- y)]. 
(5) 

It follows that we can consider u(x) and vex) as 
fundamental functions from which all other functions 
can be derived. 

6. Semigroup Properties31 

Let us now obtain general relations connecting u(x) 
and vex) with u(y), v(y) and u(x-y), v(x-y). The 
differential equations of Sec. 4 are particular cases of 
these relations. 

Referring to Fig. 3 and tracing the multiply reflected 
and transmitted fluxes, we see that 

U(x)=U(x-Y)+V(x-y)u(y)v(x-y) 
+v(x-y)u(y)u(x-y)u(y)v(x-y)+· .. 

=u(x-Y)+{ v2(x-y)u(y)/[I-u(y)u(x-y)]}, (1) 

and similarly 

v (x) = v(x-y)v(y)/[I-u(y)u(x-y)]. (2) 

Two values of particular interest are y= d and 
Y=X-d. The value Y=X-d leads, as d -) 0, to the 

o 

FIG. 3. Subdivision of a rod of length x. 

31 For a definition and discussion of semigroups see footnote 
reference 1. 
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FIG. 4. Locations of source and observer. 

foregoing differential equations, and the value y= d to 
Stokes' relations,32 a matter we shall discuss again later. 

These results show that we can replace the solution of 
differential equations by the iteration of simple trans­
formations. Consequently, these relations may be better 
suited for computational purposes than the foregoing 
differential equations. 

7. A More General Imbedding 

The foregoing results have essentially been conse­
quences of the observation that the internal fluxes UR(Y) 
and UL(Y) are functions not only of y, the position at 
which they are measured, but also of x, the length of the 
rod. Hence, we should write, as already noted in Sec. 5, 

UR(Y)=UB(Yj x), 
(1) 

UL(Y)=UL(Yj x). 

Consider now the more general situation in which we 
measure the fluxes at Y resulting from a source at an 
internal point z. (See Fig. 4.) The right-hand flux at Y 
should now be denoted by UR(X,y,Z) and the left-hand 
flux by UL(X,y,Z). We are now at liberty to allow x, y, 
and z to vary, either independently one at a time, or two 
at a time, or all three together. 

We see then that there are at least three different 
ways in which we can imbed a particular process within 
a family of processes. Two of these, variation of Y and z, 
lead to linear equations with two-point boundary condi­
tions, while the third, variation with respect to x, leads 
to a nonlinear equation with an initial value condition. 
Each has certain analytic and computational advan­
tages. In any .particular situation, we employ the 
formulation which is most convenient.33 

8. Energy Dependence (Multigroup Theory)34 

Let us now turn our attention to a more realistic 
mathematical model in which we assume that a neutron 
is characterized by an energy level as well as a direction. 
In so doing, we have our choice of either a continuous 
range of energies, or a finite set of discrete levels. 

We have already discussed the continuous version.3s 

Let us concentrate upon the discrete version here, since 
this is a case of greater importance from the compu­
tational point of view. We shall begin, as before, with 
the conventional formulation. 

32 F. Jenkins and H. White, Fundamentals of Optics (McGraw­
Hill Book Company, Inc., New York, 1950), pp. 199-201. 

33 R. Bellma.n, R. Ka.laba, and G. M. Wing, J. Math. and Mech. 
7, 741 (1958). 

34 R. Bellman and R. Kalaba, "Transport theory and invariant 
imbedding," Proc. Symposium on Reactor Theory (American Math­
ematical Society, Providence, Rhode Island), to be published. 
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The internal flux at y is now described by two vectors 

U(y) = [:~\;~ 1 ' v(y) = [~:~~ l' 
UN(Y) VN(y) 

(1) 

where N is the number of distinct energy levels or 
groups, Ui(y) represents the flux of neutrons in the ith 
level to the right, and Vi(y) the corresponding flux to the 
left. 

Generalizing the foregoing model of a neutron trans­
port process, we suppose that various interactions such 
as absorption, fission and nonfission collisions and so on, 
result in neutrons at one energy level being transformed 
into neutrons at other levels. 

We introduce four matrices 

A = (aij), B= (b,:j), C= (Cij), D= (d ij), (2) 

where 

aijl1 = the expected incremental number of neutrons 
at the ith level in the right-hand flux at 
y+A, per neutron at the jth level in the 
right-hand flux at y, (3) 

to within terms of order magnitude O(A). Similarly, 
biA denotes the incremental contribution from left­
hand to right-hand flux, CiA from right-hand flux to 
left-hand flux, and dijA from left-hand flux to left-hand 
flux. It should be noted that in the completely isotropic 
case the matrices A, B, C, D are closely related. 

The usual conserva,tion considerations lead to the 
equations 

N 

ui(y+A)-Ui(y)=A L aijUj(Y) 
i~l 

N 

+A L bijvj(y)+O(A), 
i=1 

II" 

Vi(y)-Vi(y+A)=A L CijUj(y) 
i=1 

N 

+A L dijVj(y)+O(A), 
i=1 

for i=l, 2, "', N. 

(4) 

Letting h ~ 0, we obtain the following vector-matrix 
equations: 

for O~y~x. 

du/dy=Au+Bv, 

-(dv/dy)=Cu+Dv, 
(5) 

As before, let us suppose that no neutrons are incident 
at 0, and there is a flux of intensity b i per unit time of 
neutrons in the ith level at x. We thus obtain the two­
point boundary conditions 

If the rod is inhomogeneous, the matrices A, B, C, and 
D will depend upon y. Although there is no difference as 
far as the functional equation technique of invariant 
imbedding is concerned between the treatment of the 
homogeneous and inhomogeneous, the classical treat­
ment is simplified by the assumption of constancy of 
A, B, C, and D. The discussion below applies equally to 
constant or variable matrices. 

Let W(y) be the matrix solution of 

dW [A B] -= W, W(O)=I. 
4y -C-D 

(7) 

To solve (5) subject to (6), we suppose that v(O) has the 
as yet unknown value c. Then, the solution of (5) can 
be written 

[
UCY)]= W(Y)[O]. 
v(y) C 

(8) 

Write 

[
Wu(Y) W12(y)] 

W(y)= , 
W 21 (y) W 22 (y) 

(9) 

where each W ij is an .YXN matrix. If we use the 
terminal condition vex) = b, we obtain the equation 

W 22 (X)c=b, (10) 

which determines the unknown vector c. 

9. COplputational Aspects 

The determination of C in (8.10) requires the solution 
of a system of N linear equations in N unknowns. In 
addition, we must determine the NXN matrix W using 
the linear differential equation of footnote reference 7. 
Fortunately, since the equation is linear, we can de­
termine W(x) one column at a time. Hence, instead of 
the simultaneous determination of JV2 functions, we can 
perform N determinations of N functions. 

10. Reft.ection and Transmission Matrices 

Let us now consider the foregoing process using in­
variant imbedding techniques. To that end we introduce 
the matrix R(x) = [ri;(x)], where 

rij(x) = the expected flux of neutrons in state i re­
flected per unit time from a rod of length x 
resulting from an incident flux at x of unit 
intensity per unit time in state j. (1) 

The same type of reasoning employed in the one­
dimensional case yields the matrix equation 

R(x+A) =BA+ (I+AA)R(x) (I+DA) 
+R(x)CR(x)A+O(A). (2) 

In the limit this yields the Riccati matrix equation 

R'(x)=B+AR+RD+RCR, (3) 

u(O) =0, v(x)=b. (6) with the initial condition R(O) =0. 
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In a similar fashion, if we introduce the transmission 
matrix T(x) = [tij(x)], where 

tij(X) = the expected flux of neutrons in state i 
transmitted per unit time through a rod of 
length x resulting from an incident flux at 
x of unit intensity per unit time in state j. (4) 

Then, we obtain as before 

T'(x) = T(D+CR). (5) 

11. Computational Aspects 

The determination of R(x), by way of (10.3), requires 
the simultaneous integration of N2 nonlinear equations 
with the initial value R(O) =0. This is a far more com­
plicated operation than that of solving N sets of N 
linear equations, but, in recompense, it avoids the task 
of solving N simultaneous linear equations. 

Furthermore, let us note that once R(x) has been 
determined, we have resolved the transport process, 
determination of internal and external fluxes, for a set of 
rods of increasing length. On the other hand, the con­
ventional method based upon linear equations yields the 
solution for one length at a time. 

12. Criticality 

Let us turn to a discussion of one of the most im­
portant phenomena associated with neutron transport 
and multiplication, namely criticality. As the length of 
the rod increases, the intensity of internal and emergent 
flux increases and becomes infinite as a certain critical 
length is attained. 

To determine the critical length for the energy­
independent case, let us begin with the linear equations 
of Sec. 2. If we eliminate UL(Y), we obtain the equation 

UR"(y) = UUL'(y) = -u2UR(y). (1) 

We take U constant for simplicity. The general solution 
is 

(2) 

On using the two-point boundary conditions of (2.5), 
we readily obtain the equation 

Un (y) = sinuy / cosux. (3) 

We see then that un(y) and UL(y) are infinite for O<y<x 
when x=7r/2u. This is the critical length for the simple 
neutron mUltiplication process we have set up. 

On turning to the equation for the reflected flux 
obtained via invariant imbedding, we have 

whence 
u'(x)=u(1+u2), u(O) =0, 

u(x)=tanux. 

(4) 

(5) 

Once again, we see that x=7r/2u is the critical length. 
As pointed out by McGarvey, we caIl: use (6.1) or (6.2) 

to obtain the critical length. In place of asking for the 

value of x which makes u(x) infinite, it is sufficient to 
ask for the value of x which makes u(x)=l, and then 
double x. 

13. Criticality-Multigroup Case 

It is in the determination of critical length in the 
energy-dependent case that the classical formulation 
encounters real trouble. To find the value of x which 
yields infinite flux, we must solve the determinantal 
equation 

(1) 

Let us note, once and for all, that when we speak of 
the critical value, we mean the smallest value of x which 
yields an infinite flux. From the physical point of view, 
the problem of determining expected fluxes is meaning­
less when the length of the rod exceeds the critical value. 
The higher values of x which yield infinite values are 
connected with the- higher characteristic values as­
sociated with the two-point boundary-value problem. 
They do not appear to have any physical significance, 
although this is always a dangerous statement. 

On the other hand, when we go over to a more 
sophisticated discussion concerning probabilities of 
fluxes of various intensity, and probability of fiSsion, 
then it becomes quite significant to consider rods of 
greater than critical length. There are a number of 
interesting mathematical problems in this area which 
have been considered in detail by McGarvey,3li and 
Mullikin and Snow.36 We shall discuss them briefly 
below. 

Returning to the equation in (1), we see that if N, the 
number of groups, is of any size, say 10 or 20, the 
problem is not trifling. If N = 50 or 100, we cannot con­
sider a solution along the foregoing lines to be satis­
factory, for a number of reasons which are familiar to 
numerical analysts. 

The invariant imbedding technique requires the inte~ 
gration of N2 simultaneous differential equations which 
are quadratically nonlinear. This integration is pursued 
until some element in the matrix R(x) becomes infinite. 
To begin with, let us discuss the dimensional aspects. A 
computation of this type for N = 10 or 20 is completely 
routine for modern digital computers, and one of this 
nature for N = 50 is large, but feasible. For the machines 
that will be operational within a few years, values of N 
such as 100 or 200 will be routine. 

Now let us turn to the integration of the differential 
equations until a singularity occurs. Clearly, this is not a 
routine operation if accuracy is desired. There are 
several things that we can do. First of all, we can ob­
serve that as x approaches Xo, the critical value, we have 
an asymptotic behavior of the form 

r;j(x)"'Sij/(X-Xo), (2) 

16 D. McGarvey (to be published). 
36 T. Mullikin and R. Snow (unpublished). 
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where Sij;:::O, and some Sij>O. Hence 

1/r ,-j(x)'" (x- xo)/ S ij, (3) 

when Sij>O. This linear behavior can be used to predict 
the value of Xo with great accuracy. Furthermore, the 
fact that there are N2 functions rij(x) will enable us to 
determine Xo with even greater accuracy. 

Secondly, we can use McGarvey's observation, pointed 
out in the section on criticality for the simple energy­
independent case. In place of finding the first value of 
x for which R(x) is singular, we can ask for the first 
value of x for which the matrix R(x) has its largest 
characteristic root equal to one. If this value is Xl, the 
critical value will be 2XI. 

Since the matrix R(x) is a positive matrix, or at least, 
nonnegative, we know that there will be one root of 
largest absolute value which is rea1.37 By slight pertur­
bation of the transition matrices A, B, C, and D we can 
actually ensure that all the entries in R(x) are positive, 
which means that the root with largest absolute value 
will actually be positive. 

There are now available a number of simple and 
efficient techniques for determining this root, the Perron 
root, of a positive matrix. Furthermore, since clearly 
R(x) has monotonically increasing elements, we can use 
various interpolation methods to locate the position of 
this root very accurately. A large number of questions 
in the theory of branching processes can be reduced to 
the problem of determining the largest characteristic 
roots of positive operators; see Bellman-Harris,38 and 
Birkhoff.39 

In any case, this method seems far superior to that of 
finding the roots of a determinantal equation of high 
degree. It would seem that invariant imbedding tech­
niques have a distinct advantage as far as the determi­
nation of critical parameters is concerned. 

14. Extrapolation over Multigroups 

One way of determining the critical length with great 
accuracy is based upon the use of a large number of 
energy levels. It is reasonable to suspect that closer and 
closer values to the true value will be derived as we use 
finer and finer subdivisions of the energy range. Conse­
quently, we can use the following extrapolation method. 
Solve the problem for N = 10, for N = 20, N = 30, and so 
on, until we reach the limits of the computer. If we use 
the successive values obtained for the critical length, we 
can extrapolate to N = 00, and thereby obtain a more 
precise value. 

Here is where an analysis of the precise asymptotic 
form as N ~ 00 will be very valuable. With the aid of an 
analytic representation of the critical length as a func­
tion of N, we can use superior extrapolation procedures. 

37 R. Bellman, Introduction to Matrix Analysis (McGraw-Hill 
Book Company, Inc., New York, 1960), Chap. 16. 

38 R. Bellman and J. M. Danskin, The RAND Corporation, 
Rep. R-256, Chap. 5, March 1, 1954. 

39 G. Birkhoff, Proc. Nat. Acad. Sci. U. S. 45, 567 (1959). 

Of course it is seldom possible to obtain cross sections 
and other physical parameters, as continuous functions. 
Hence the limiting case N ~ 00 is often of greater 
mathematical interest than it is of physical importance. 

15. Multidimensional Transport Theory­
Slab Case 

Leaving the physically cramped but mathematically 
comfortable confines of the one-dimensional, let us 
begin our investigation of the more significant multi­
dimensional processes by considering a neutron trans­
port process taking place in an infinite slab contained 
between the planes y=o and y=x in three space. As 
usual, surrounding the slab is a vacuum which means 
that a neutron leaving the slab at either boundary never 
returns. (See Fig. 5.) 

A classical formulation of this problem leads in the 
isotropic case to the equation 

1 a f a f ku II , , 
- -+JL-+U f =- f(x,p. ,t)dp. , 
c at ay 2_1 

FIG. 5. The incident and reflected fluxes. 

(1) 

where c is the constant neutron velocity, u is the con­
stant collision cross section, and k is the average number 
of neutrons emerging from a collision. As usual, p. is the 
cosine of the angle between the direction of motion of 
the particle and the positive y direction, and j(y,p.,t) is 
the density of neutrons at y traveling in direction p. at 
time t. 

There are boundary conditions at y=o and y=x, 
arising from the fact that particles may not reenter the 
slab once they have emerged. In the steady-state situa­
tion, of the type we have so far been considering, (1) 
takes the form 

aj ku II 
p.-+uj=- f(x,p.',t)dp.'. 
ay 2-1 

(2) 

A rigorous treatment of Eqs. (1) and (2) requires deep 
analysis.23 •24 

Let us consider this problem using invariant im­
bedding techniques. To simplify our initial presentation, 
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let us return to neutrons which are independent of 
energy, but do, however, possess directions of motion. 
Assume, as indicated in Fig. 5 that there is a plane­
parallel flux in direction (J per unit area per unit 
time incident at x, and that we are given the various 
probabilities of absorption, scattering and fission colli­
sions, and the resultant angular distribution of neutrons. 

The type of reasoning used in the previous sections 
enables us to derive a functional equation of the form 

dU/dX= T(u), 

where T is a quadratic operation, for the function 

u(x,{J,1t) = the reflected flux per unit area on the 
surface in the if; direction per unit time 
as a result of a unit incident flux per unit 

(3) 

area on the surface per unit time.40 (4) 

There is no need for us to go into the details for three 
reasons. In the first place, we shall derive similar 
equations below for cylindrical and spherical geometries. 
The second reason we shall discuss immediately below. 
Finally, we shall discuss this problem from another 
physical viewpoint in Sec. V. 

f 
y=o 

f 
y=~-t. 

'\ 
y=. 

FIG. 6. A stratified slab. 

16. Equivalence of One-Dimensional Energy­
Dependent Cast and Angular-Dependent, 

Energy-Independent Slab Case 

What is important is the observation that the trans­
port process for a one-dimensional rod with energy­
dependence is abstractly equivalent to the process for 
the slab with discrete angular dependence, but no energy 
dependence. 

In both cases, we have a finite number of "states" and 
mechanisms for transforming a neutron from one state 
to another. Another advantage of this formulation lies 
in the fact that the inclusion of energy dependence in 
the slab merely increases the number of states, without 
at all changing the mathematical formulation. 

17. Cylindrical Regions 

The infinite slab is stratified by considering it to be 
composed of a series of strata of which the stratum be­
tween y=x and y=X-d is typical (Fig. 6). 

In analogous fashion, we can stratify other regions 

40 Throughout this paper we measure fluxes with respect to the 
geometrical areas on which they impinge, rather than with respect 
to a plane normal to the beam. For a discussion, see Sec. 59. 

o ~ 8 ~ ."./2 

o $1#1 ~.". 

FIG. 7. A problem with cylindrical geometry. 

with various types of symmetries. Consider, for our 
first example of this, an infinite cylindrical region, whose 
cross section u(r) is dependent only upon the radial 
coordinate r. Let us suppose that neutron production is 
energy independent and isotropic, with k neutrons 
emerging after each collision. 

Given an incident flux of one neutron per unit area per 
unit time on the surface at angles «(J,cp), we wish to­
determine the reflected flux if;(r,!J"cp,!J,',CP'). As usual. 
!J,=cos(J (Fig. 7). 

The imbedding is now performed by considering the 
cylindrical region to be composed of a sequence of 
infinitesimal cylindrical shells. In cross section, they 
appear as in Fig. 8. (For ingoing particles, (J is measured 
with respect to the inward normal.) On referring to 
Figs. 7 and 8, and adding up effects as before, we obtain 
the functional equation41 

dif; qu(r) csccp qu(r) CSCCPI" II ----+ dcp" if;(r,!J,",cp",!J,',cp')d!J," 
dr 47r!J, 47r!J, 0 0 

u(r)[csccp cscCP'] -- --+-,- if;(r,!J"cp,!J,',cp') 
47r !J, !J, 

qu(r) I" II csccp" +-- dcp" d!J,"if;(r,!J"cp,/',cp")--,-
47r o. 0 jJ. 

. {1+ .£" dCP"'i
l 

d!J,"'if;(r,/",cp"',/,cp')}, 

if; (O,!J"cp,!J,' ,cp') = 0. (1) 

To compute dif;/dr, we must note that!J, itself is really 
a function of r, and the same is true of !J,'. Upon taking 

FIG. 8. Stratification of 
a cylinder. 

41 R. Bellman, R. Kalaba, and G. M. Wing, J. Math. and Mech. 
8,575 (1959). 
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0;:;; a;:;; 11/2 

FIG. 9. A process taking place in a sphere. 

this into consideration, we find 

We shall discuss the corresponding result for spherical 
regions, and then discuss the computational significance 
of these results. 

18. Spherical Regions 

As our next example, consider a sphere composed of 
transport material whose cross section is dependent upon 
the radial coordinate p alone. As indicated in the 
following figure, we introduce an angular coordinate a, 
cosa= v, and suppose that we have a conical flux of 
neutrons, with direction v, incident uniformly over the 
surface.of the sphere, one neutron per unit area per unit 
time. We wish to determine the reflected flux in direction 
v', I/;(p,v,v'). (See Fig. 9.) 

The usual analysis yields the equation41 

iN I-v2 iJl/; I-v'2 iJl/; 
-+--+--
iJp vp iJv v'p iJv' 

qu(p) qu(p) 11 ( "')d" =--+-- I/; p,V ,v v 
4?rv 2v 0 

(1 1) q II. I/; (p,v,v") 
-u(p) -+- I/; (p,v,v')+-u(p) dv"---

v v' 2 0 v" 

X{1+27ri11/;(p,V,,,,VI)dV"'}' (1) 

19. Critical Mass 

The critical reader may seriously question the value 
of the results obtained in the two previous sections, 
since incident fluxes of the type we have employed are 
seldom found. This is certainly a valid criticism. 

There is, however, one quite important case in which 
we can profitably use this type of flux, and, indeed, 
whatever type of flux is most convenient. This is the 
determination of critical mass. It is possible to convince 
oneself that whatever radius is critical for one type of 
flux will be critical for any other type of steady-state 
flux. 

20. More General Fluxes 

The same persevering reader may also ask why we 
have not used invariance principles directly for more 
general fluxes. This can be done. What has held us back 
has been dimensionality difficulties. Consider, for ex­
ample, a two-dimensional slab in which we consider an 
incident flux of unit intensity per unit time at an angle 
8 at a particular point, say z=O. (See Fig. 10.) We then 
introduce the flux, u(8,I/;,z,x), as the reflected flux at 
angle I/; per unit time at the point a distance z from the 
point of incidence. We then obtain the same type of 
equation for u as before, with the difference that u now 
depends upon one additional variable z. This increase in 
dimensionality introduces formidable computational 
difficulties due to the enormously iricreased memory 
requirements. 

From the analytic point of view, there is no difficulty 
in considering realistic fluxes. From the computational 
point of view, these more realistic problems require new 
techniques and bigger and faster machines. For a pos­
sible line of approach, see Bellman and Dreyfus.42 

21. Volterra vs Fredholm Equations 

The equations we have obtained in the foregoing 
sections using invariant imbedding techniques have in­
variably been nonlinear, as compared to the linear 
equations of classical transport theory. Considering the 
fact that linear equations with their superlative super­
position properties are difficult enough to analyze 
theoretically and resolve numerically, why do we wish 
to introduce nonlinear equations? Although we have 
gnawed around the edges of this question in previous 
pages, let us now make it the principal course. 

Our answer can be put in very simple terms: We wish 
uniformly to replace two-point boundary-value prob­
lems, and boundary-value problems in general, by 
initial value problems. This is equivalent to replacing 
Fredholm-type integral equations by Volterra-type inte­
gral equations. Naturally, the equations will be in 
different variables. 

FIG. 10. Incident and reflected fluxes. 

42 R. Bellman and S. Dreyfus, "Functional approximations and 
dynamic programming," Math. Tables and other Aids to Compo 
(1959). 
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This is not a new idea, and, indeed, is one that has 
been proposed before, and used with some success. The 
approach we use, however, based upon invariance prin­
ciples, and extending that of Ambarzumian6 and 
Chandrasekhar,5 is quite different from these men­
tioned, and quite unlike any earlier methods. 

Weare engaged in this program for two reasons. In 
the first place, Volterra-type equations lead to iterative 
algorithms which are simpler for digital computers than 
algorithms based upon the solution of linear systems of 
equations. Secondly, and the two are intimately related, 
functional equations of the type we derive, despite their 
nonlinearity, are easier to treat as far as existence and 
uniqueness are concerned. These last topics, however, 
we have bypassed here since we are at the moment 
principally interested in exhibiting the mechanics of the 
formulation of the classical particle processes in these 
new terms. 

22. Stokes Relations 

It is interesting to find that the reflection and trans­
mission matrices, and, more generally, the reflection and 
transmission functions, are related to each other in 
algebraic fashion. We already have the Riccati differ­
ential equation for R(x) and the differential equation for 
T(x) in which R(x) enters (see Sec. 10). 

We shall refer to these new relations as Stokes' rela­
tions since the first identities 'of this type connecting 
reflection and transmission coefficients were discovered 
by Stokes in work on light rays impinging on slabs. 

In Sec. 6, we discussed the semigroup properties of the 
functions u(x) and vex) obtained for the simple one­
dimensional energy-independent process. Recognition 
of these transformation properties is also found in 
Redheffer.43 and for the matrix case as well. To obtain 
the following relations, we use the special case of these 
relations in which the stratification instead of being as 
before like Fig. 11, is, instead, like Fig. 12, where ~ is an 
infini tesimal. 

The usual counting process yields the relation 

R(x+~) =R(x)+T(x)BT(x)~+O(~), (1) 
or 

R'(x)=TBT. (2) 

For simplicity we assume that 

A=D, B=C. (3) 

In view of Eq. (10.3), we conclude that 

TBT=B+DR+RD+RCR, (4) 

a relation which is not too easy to verify directly. 

o >+6 

FIG. 11. One stratification of a rod. 

43 R. RedhelIer, in Mathematics for Modern Engineers (1960), 
Vol. 2. 

o x+6 

FIG. 12. A second stratification of a rod. 

Similarly, we find that 

T(x+~)= (I+D~)T(x)+R(x)BT(x)~+O(~), (5) 

whence 
T'(x) = (D+RB)T. (6) 

This in conjunction with Eq. (10.5) yields the further 
result 

T(D+BR) = (D+RB)T. (7) 

23. Probabilities 

For various purposes, it is desirable to have a more 
precise picture of the tra.nsmitted and reflected flux than 
that furnished by the expected values. This is particu­
larly the case when x is just less than critical, when it 
assumes the critical value, and when x is greater than 
critical, the case of supercriticality. 

Let us then talk about the probabilities of events, 
rather than the expected events. In place of a steady­
state situation, let us suppose that one neutron is inci­
dent at x, the right end of our one-dimensional rod, at 
time zero. We shall call this neutron the trigger neutron. 

Let us define the set of probabilities 

Pn(X) = the probability that n neutrons are re­
flected from a rod of length x over all time 
as a result of one trigger neutron incident 
at x at time zero. (1) 

In order to obtain a set of differential equations for 
these functions, we observe that the trigger neutron 
incident upon a rod of length x+~ either has a fission 
collision in the initial length [x+~, x] or it does not. If 
it does not, consider the neutrons that emerge from the 
length [O,x]. If k of these emerge over all time, then at 
most one of these, to terms in O(~), can have a fission 
collision in th~ interval [x, x+~]. Consideration of 
these possibilities, together with that of an initial fission 
collision, leads to the relation 

p,,(x+~)= (1-0'~) 

" 
X{Pn(x)(l-nO'~)+ L h(x)kO'~pn-k(X)} 

k~l 

+O'~pn_l(X)+O(~), 

n=O, 1,2, ... ; P_l(X) =0. (2) 

Passage to the limit yields the infinite system of 
differential equations 

n 

pn'(X)= - (n+l)O'pn(X)+O'pn_l+O' L kPk(X)Pn-k(X), 
k~l 

n=O, 1, 2, ... ; P_l(X) =0. (3) 
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Physical considerations yield the obvious boundary 
conditions 

{
I, n=O 

pn(O)= 
0, n~O. 

(4) 

In order to test the feasibility of the computational 
solution of systems of this type, and to obtain some idea 
of the time required, the first forty of these equations 
were solved numerically using a rather old-fashioned 
machine, the Rand Johnniac.34.44 

A number of interesting questions concerning the 
analytic behavior of the pn(X) as x approaches the 
critical value arise as a result of these computations. 

If we introduce the generating function 

00 

u(x,s)= L Pn(X)sn, (5) 
n-O 

we readily obtain the quasilinear partial differential 
equation 

U z = u(s-l)u+us(u-l)us, 

with the initial condition 

u(O,s) = 1. 

(6) 

(7) 

This equation has been studied in detail by Mullikin and 
Snow.36 The solution exhibits a very strange behavior as 
x goes through the critical value. As we shall see later 
the equation for the generating function can be obtained 
immediately by means of functional equation techniques. 

It is important to insert a word of caution about the 
use of these techniques. Methods based upon expected 
values can be used with a carefree abandon as long as 
the length of the rod is less than critical. On the other 
hand, the probabilistic equations obtained in the fore­
going hold for any value of the rod. They must be 
considered the basic equations. 

As long as x is less than the critical length, we have 
the condition 

L pn(x)=I, (8) 
n=O 

in ad~ition to the initial values of (4). As soon as x is 
greater than the critical length, this equation no longer 
holds. This is caused by the fact that there is now a new 
probability to be added, the probability of an infinite 
flux. Lack of recognition of this fact can lead to para­
doxical conclusions. A thorough discussion of this phe­
nomenon will be found in the paper by Mullikin and 
Snow cited in the foregoing. 

Finally, let us note that similar equations can be ob­
tained for the transmission probabilities.44 

« R. Bellman, R. Kalaba, and G. M. Wing, J. Math and Mech 
7, 149 (1958). . . 

24. Analogy between Critical Length and 
Initiation of Shock Wave 

The equation for the generating function given in 
Sec. 23, is analogous to the equation ' 

(1) 

where t is now a time variable and x a space variable, 
used by Courant-Hilbert, and others, as an example of 
how a discontinuity can arise in the behavior of the 
solution of a differential equation. This type of dis­
continuity is similar to that which is observed in the . 
behavior of blast waves and is called a "shock." 

It is interesting then to observe this analogy between 
the onset of a shock as a function of time and the onset 
of criticality as the length, or radius, is increased. 
Analogies of this type are useful since knowledge gained 
in one area can then be easily transplanted to another. 

We shall observe a further analogy subsequently. Just 
as the presence of the smallest degree of viscosity de­
stroys the pure shock, so the presence of the slightest 
neutron-neutron interaction can destroy criticality.46 

25. Description of a Generalized 
Transport Process 

~s we shall see in a moment, the imbedding technique, 
which we have used so far only for one-dimensional 
rods: slabs, cylindrical and spherical regions, can be 
conSiderably extended. Let us now formulate a trans­
port process in general terms. Let a family of surfaces in 
n-dimensional space be characterized by a single 
continuous parameter '1~0. The surface corresponding 
to '1=0 (it may be a degenerate surface) will be con­
sidered a bounding surface, and the parametrization 
will be such that the region included between '1=0 and 
'1='11 will be included by the region between '1=0 and 
'1='12>'11' It is clearly not necessary to consider the 
topological properties of these surfaces and regions in 
detail. Such ideas as outward and inward directions 
area of a surface, and so on, can be taken intuitively a~ 
far as our purposes are concerned. The family of surfaces 
will be assumed to partition continuously all or part of 
the n-dimensional space into a set of strata. 

For example, the family of surfaces may be the set of 
all spheres centered at the origin in three-dimensional 
space. Here '1 is r, the radius of the sphere, and '1=0 is a 
deg:nerate bounding surface, a point sphere. Again, the 
family may be the set of all vertical lines, in the two­
dimensional space, to the right of the vertical axis. In 
this case we can choose '1 to be x, and x=O is a non­
degenerate bounding surface. 

By a "particle" we shall understand a state vector S 
depending on the parameter '1. The state vector contains 
info~mation r.egarding the direction of motion, energy, 
speCific locatlOn on '1, the type or types of physical 

<6 R. Bellman, R. Kalaba, and G. M. Wing, J. Math. and Mech 
8, 249 (1959). . 
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particles that we are discussing (in case there are 
particles other than neutrons), and any other properties 
which we may choose to include in the process. 

The stratum (1],1]+.1), .1>0, will be assumed to con­
tain a medium which permits a transport process. A 
particle passing through the stratum may engage in 
interactions of both a deterministic and a stochastic 
nature. As mentioned above, the distinction between 
these is really a matter of mathematical convenience. 
The deterministic interactions will produce effects which 
will be proportional in magnitude to.1 plus a term 0(.1); 
the stochastic interactions will have probability of occur­
rence proportional to .1 plus 0(.1) within the stratum 
(1],1]+.1). These interactions will have no effect on the 
transport medium, but will result in a transformation on 
the state vector S, in some cases transforming it into 
two or more such vectors (fission), in some cases 
annihilating it (absorption), in other cases leaving one 
vector as before. Hence, the movement of a particle 
within the medium between 0 and 1] can be thought of as 
a sequence of transformations on state vectors, together 
with the creation and annihilation of vectors. Subse­
quently, in Sec. 36, we shall consider a process in which 
the medium is changing as the process continues. 

We shall now investigate the following problem. Let a 
flux of "particles" specified by S impinge on 1]. What are 
the number and nature of the particles (state vectors) 
emergent from 1]? Often the source will be given in 
particles per unit time, in which case we shall seek the 
number of particles emerging from 1] per unit time. In 
some instances, we shall be concerned with the number 
and nature of particles emergent from 1]=0 per unit 
time? The former particles we shall call "reflected," the 
latter we call "transmitted." It is clear that in some 
cases, such as for the sphere mentioned above, the 
second problem is ill-posed. We shall investigate only 
the problem of reflection, since the formulas for trans­
mission can be. obtained in a similar fashion. 

26. Expected Value Equation 

We begin by considering not the state vector itself, 
but its expected value. Consider a stream of particles, 
one per unit area per unit time, in state S, impinging 
upon the surface 7]. We ask for the expected number, or 
flux, of particles in state S' reflected per unit area per 
unit time. Denote this flux by tf;(7],S,S'). For the present 
discussion we shall assume that Sand S' contain no 
information about the specific location on 7]. It is 
evident that this assumption imposes a strong symmetry 
requirement upon both the surface 7] and the impinging 
flux. 

Let the probability that a particle in state S passing 
through (7],7]±.1) suffers a collision-the stochastic 
process-be given by P(7],S).1+0(.1). Let T(7],S,S') be 
the average number of particles in state S' resulting 
from this interaction and transmitted to 7]±.1. Let 
R(7],S,S') be the average number in state S' reflected 

back to 7]. Then, proceeding as in the foregoing, we find 

tf;(7]+.1, S, S') 

= P(7],S).1R(7],S,S') 

+ P(7],S).1j T(7],S,S")tf;(7],S",S')dS" 
s" 

+[1-P(7],S).1Jtf;(7],S,S')[1- P(7],S').1J 

+[1-P(7],S).1J i" dS"tf;(7],S,S").1P(7],S") 

. { T(1],S",S')+ ~" R(7],S",S"') 

Xtf;(7],S"',S')dS"'} +0(.1). (1) 

The first term on the right-hand side of this equation 
represents the contribution to the reflected flux from the 
particles which are reflected immediately from the 
stratum of thickness.1, and the second arises from those 
which pass through this stratum but change state, 
giving reflected particles from [O,7]J which then pass 
through the stratum without interaction. The third 
term is produced by particles which pass unaffected 
through [7], 7]+.1J and give rise to reflected particles 
from [O,7]J which again pass through the ,stratum with­
out interaction. The last term accounts for particles 
which enter [O,7]J without interaction in [7], 1]+.1J, but 
whose reflected flux does have an interaction in [7], 7]+.1]. 
Some of this flux is transmitted through this stratum, 
the rest is returned to [O,7]J and re-reflected. 

Here all the states on the right-hand side are taken at 
7], and the integration over states is symbolic. The 
transport equation resulting when .1---? 0 is then 

xi" dS"T(7],S,S")tf;(7],S" ,S') 

- [P(7],S) + P(7],S') Jtf;(7],S,S') 

+f dS"tf;(7],S,S")P(7],S") {T(7],S" ,S') 
S" 

+f dS"'R(7],S",S''')tf;(7],S''',S') t. (2) 
S'" r 

It may be shown that (2) includes Eqs. (17.1) and 
(18.1) as special cases. By choosing different geometries 
and different meanings for S, it is possible to write down 
a great variety of particular transport equations using 
this general result. For more details, see footnote 4. 
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27. Simple Stochastic Case 

Before attempting to write down a general stochastic 
functional equation, we consider a simple example, the 
first of Sec. 2. We assume, for further simplicity, that 
in a collision exactly two neutrons emerge, one going to 
the right, one to the left. We let one neutron enter the 
bar at time zero. 

Let {U(i)(x)}, i=1, 2, 3, ... , be a sequence ofrandom 
variables denoting the number of neutrons reflected 
from the bar in all time. Let {F(i)(~)}, i= 1,2,3, ... , be 
another sequence of random variables with 

{

1 if a collision occurs in a segment of 
F(i) (~) = length ~, 

o otherwise. 

(See Fig. 15.) Then, using the invariant imbedding 
principle, we have 

U(l) (x) = F(l) (~) {1 + U(2) (x-~)} +[1-F(l) (~)] 

U(3) (x-A)+4 

X :E (1+F(i)(~)U(i)(x-~)} 
i=4 

+w(x,~), (1) 

where Prob{w(x,~)~O} =O(~). 
Let us interpret this equation. The superscripts in 

themselves have no significance and serve merely to 
distinguish one random variable from another. Notice 
that if the initiating particle makes a collision in passing 
from x to x-~ (Fig. 13), the second term of (1) is zero 
while the first gives just the number of particles emer­
gent from x-~-namely, the one immediately out due 
to the collision in (x-~, x) plus the random number 
U(2) resulting from the left moving neutron acting as a 
source particle for the rod (0, x-~). If there is no initial 
interaction in the interval (x- A, x), then the first term 
of (1) is zero, and the second term counts. Of the random 
number U(3) (x-~) of neutrons emerging from x-~ 
some make no collisions in (x-~, x) and hence con­
tribute only one to the sum. Others make a collision in 
(x-~, x) giving not only an immediate right traveling 
particle, but also a random number U( i) (x-~) reflected 
from (0, x-~). The fact that all other processes are 
"unlikely" is included in the term w. 

We now introduce the generating function 

u(x,s)=E{sU(:t)}. (2) 

Then, using the properties of the generating function 
and writing Prob{F(l) (~) = 1} =<T~+O(~), we find, after 
careful calculation withI(1), the equation 

u(x,s)=<T~su(x-~, s)+(1-<T~) 

Xu(x-~, (l-u~)S+udsu(x-~, s»+O(~) 

==uAsu(x,s)+(1-u~)[u(x-~, s) 

+u.(x-A, s) (-uAs+<TAsu)]+O(A). (3) 

This leads at once to the partial differential equation 

u:J;= -uu+usu+usu.+usuu •. (4) 

This is precisely Eq. (23.5) derived there by using quite 
different methods, and from it may be obtained the 
usual flux equations for the rod case. It was first pointed 
out to us by T. E. Harris that the functional equation 
approach could be applied directly to derivation of the 
generating function. This is an application of a quite 
general principle that methods suitable for the deriva­
tion of first moments can be used almost unchanged to 
derive generating functions. From these, relations for 
the higher moments can be readily obtained. See Sec. 51 
for another illustration. 

28. Basic Stochastic Functional Equation 

We shall now derive a basic stochastic functional 
equation applicable to the generalized situations de­
scribed in Sec. 26. We introduce the appropriate random 
variables. 

Let 

U(S,S',1/) = random number of particles in state S' 
reflected from 1/ over all time due to an 
initial particle in state S impinging on 
1/ at time zero. (S and S' may now in­
clude information as to the specific 
location on 1/.) 

{

1 if the particle in state S is in-
reS ) = volved in an interaction in the 

,'T) stratum (1/-~, 1/), 
o otherwise. 

Z(S; S/,S2',· .. ,Sk'; 1/) 

(1) 

(2) 

if the result of an interaction of a particle 
in state S with the medium is to produce 
k particles in state S/, S2', ... , S/, 
k=1, 2, 3, ... , 

(3) 

otherwise. 

By the stochastic variables U( i), r( i), Z( i) we shall mean 
respectively any of a denumerable set of variables with 
the properties described in the foregoing. Different 
superscripts will serve merely to distinguish different 
random variables, and sometimes they will be omitted. 

Also, let Q(S,1/) denote the deterministic change in 
state caused by passage through the stratum C1/-A, 11). 
By a deterministic change we mean one that occurs by 
virtue of mere positive change without any interaction 
necessarily taking place. For example, any dependence 
of fJ. on r mentioned in Sec. 17 results in such a change. 

Finally, we assume that only a finite set of states S is 

o 

FIG. 13. A rod process. 

x_ (Inltlotlng 
porticlel 
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possible. This permits us to use characteristic functions 
rather than characteristic functionals, and considerably 
simplifies the discussion. 

At the risk of being somewhat redundant, we now 
discuss the random physical processes which occur. A 
particle in state S incident on the surface", enters the 
stratum (",-.:1,1/). There it may undergo a deterministic 
transformation converting it from state S to state 
Q(S,1/). In addition, it may undergo a stochastic change 
(collision) producing a random number of particles in a 
random set of states. Each of these particles acts inde­
pendently of the others and may emerge from 1/ or be 
incident upon 1/-.:1. In the latter case the particle is a 
"source" particle on 1/-.:1, resulting in a random number 
of particles in a random set of states eventually emerging 
from 1/-.:1. Each of these reflected particles may undergo 
deterministic and stochastic transformations in (1/-.:1,1/). 
Some emerge from 1/ and are counted, others return as 
source particles into 1/-.:1 and must be followed out 
again. No processes need be traced to order higher than 
.:1-that is, to more than one collision in (1/-.:1, ",). 

If we enumerate these events mathem~tically, we 
arrive at the functional equation 

U(S,S',1/)=r(S,1/) I: Z(S;SI',S/," ',Sk';1/) 
lSi') 

where 

k 

X[I: U(i)(S/, S', 1/-.:1)J 
i=l 

n 

+[1-r(S,1/)J I: [1-r(i) (S',1/)J 
i=1 

n' 

+[1-r(S,1/)J I: (I: [r(i) (Sm',1/) 
8 m' i=l 

X{ I: Z(i)(Sm';S/'," ·,Sk";1/) 
lSi") 

k 

. I: U(p)(Sp",S',1/-.:1)}J)+w(S,S',1/), (4) 
p=l 

n= U[Q(S,,,,), S', 1/-.:1J, 

n'= U[Q(S,1/), Sm', 1/-.:1J, 

S' is such that S'=Q(S',1/), 

and w(S,S',1/) is the contribution from events that have 
probability 0(.:1). The symbol {S;} means all the subsets 
of the set of states. 

Proceeding as in Sec. 27, it is now theoretically pos­
sible to derive the flux equation of Sec. 27 by taking ex­
pected values of (4). It is likely that the direct approach 
of Sec. 26 is really simpler. However, the basic stochastic 
equation (4) seems of considerable theoretical interest 

1~------+I------4------4I~------~I--z 
o y-A y+A 

FIG. 14. The physical situation. 

and could well be used for computational purposes in 
place of a direct Monte Carlo approach. 

29. Collision Processes 

So far we have not considered transport processes in 
which the particles interacted with each other, nor 
processes in which the medium was affected by the 
transport process. In the sections that follow, we shall 
consider processes of this nature. 

Let us discuss a transport process in a one-dimen­
sional rod in which we allow neutron-neutron inter­
actions, the result being annihilation. To simplify 
matters, let us suppose that there is no energy depend­
ence, and that collisions occur only between neutrons 
travelling in opposite directions along the line. As usual, 
we shall suppose that when fission occurs one neutron is 
produced in the forward direction and one in the back­
ward direction. 

Let 

1. a. (1.:1+0(.:1) = the probability that a neutron will 
interact with a segment of length .:1 and produce 
fission. 
b. u(y; x,z) = the expected number of neutrons per 
unit time passing an interior point y to the right, 
as a result of z neutrons per unit time introduced 
at x (see Fig. 14). 
c. 'O(y; x,z)=the expected number of neutrons per 
unit time passing an interior point y to the left. 
d. k(u,v).:1+0(.:1)=the expected number of neu­
trons in a stream of strength u which are anni­
hilated per unit time due to collisions with an 
opposing stream of strength v, in an interval of 
length .:1. 

30. Internal Flux Equations 

The usual "input-output" analysis yields the relations 

u(y) = u(y-.:1) (1-(1.:1) 
+u(y- .:l)(1.:1+'O(y )(1.:1- .:1k(u,v )+0(.:1), 

'O(y) = v (y+.:1) (1-(1.:1) 
(1) 

+'O(y )(1.:1+u(y )(1.:1- .:1k (u,v) +O(.:l), 

where we, at this time, suppress the dependence upon x 
and z, and write 

u(y,x,z) = u(y), v (y,x,z) = v(y). (2) , 

If we pass to the limit as .:1 ~ 0, we are led to the 
nonlinear system of differential equations 

u' (y) =(1'0- k(u,v), 

v'(y)= -(1u+k(u,v). 

The boundary conditions are 

u(O)=O, 'O(x)=z, 

two-point boundary conditions. 

(3) 

(4) 
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----I~r(z,x) 

o 

31. Discussion 

In general, the equations in (30.3) cannot be resolved 
in terms of elementary transcendents of analysis. Con­
sequently, if we wish to obtain a numerical solution of 
(30.3) cum (30.4), we must resort to various computa­
tional schemes. Although a number of these are avail­
able, it cannot be said there are any of automatic 
application. Questions of this nature are of great diffi­
culty, and perhaps are most easily handled by being 
bypassed. In the next section we shall approach this 
problem in a different way. 

If we make the assumption that k(u,v) = buv, b>O, a 
certain amount of analysis can be carried out. 'See 
footnote reference 45 for some theoretical and compu­
tational results. Henceforth, we assume this form of 
k(u,v). 

32. Reflected and Transmitted Flux 

Let us now approach this problem by means of 
functional equation techniques. Let 

r(z,x) = the expected number of neutrons reflected 
per unit time from a homogeneous bar of 
length x as a result of having z neutrons 
incident at x per unit time. (1) 

(See Fig. 15.) 

To evaluate the expected number of neutrons reflected 
from a bar of length x+.l we note, first of all, that some 
collisions with nucleii may occur immediately when the 
z neutrons enter the segment [x, x+.l]' Since each such 
collision results in a neutron going to the right, uz.l 
particles emerge at x+.l. Meanwhile, since a neutron 
is produced going to the left also, the original flux z is 
not affected by collisions with nucleii. However, this flux 
is reduced by annihilation by an amount bzr(z; x).l due 
to the opposing flux out of x. It is also increased by an 
amount ur(z; x).l due to fission collisions in [x, x+.l] 
made by the flux out of x. Hence there is at x a source of 
strength z-bzr(z; x).l+ur(z; x).l. Finally, the reflected 
flux resulting from this source is partially annihilated by 
interactions with the impinging flux in [x, x+.l]' Sum­
ming up, we are led to the relation 

r(z; x+.l) 
=uz.l+r[z-brz.l+u.lr(z,x)][l-bz.l]+O(.l). (2) 

By letting .1 tend to zero, we find that r(z; x) satisfies 
the quasilinear first-order partial differential equation 

r .,=uz-bzrr.+urr.-bzr, (3) 

where, as usual, the subscripts indicate partial differ­
entiation. The reflection function r(z; x) also satisfies 

FIG. 15. The reflected flux. 
z • 

the initial condition 

r(z; 0)=0 and reo; x)=O. (4) 

Equation (3) specializes, for b= 0, to the Riccati 
equation derived in earlier sections for the reflection 
coefficient (Sec. 4). It may be resolved via characteristic 
theory'6 or by direct numerical integration, returning 
essentially to (2). The equations for the characteristics 
are 

dx/ds=l, 

dz/ ds= bzr-ur, 

dr/ds=uz-bzr. 

(5) 

Since x=s, z=O, r=O is a solution of the system (5) 
passing through the point x=z=r=O, we find that 

reO; x)=O, (6) 

as was assumed in the foregoing on physical grounds. 
Once the function r(z; x) has been determined for 

suitable ranges of z and x, one may reduce the determi­
nation of u(y) and v(y), the internal fluxes, to the solu­
tion of initial value problems, as was mentioned earlier. 
If the incident flux v (x) =z is specified, then the reflected 
flux is r(z; x)=u(x), so that now both u(y) and v(y) are 
specified at y=x. Through use of Eqs. (30.3) the 
functions u(y) and v(y) may now be determined on the 
entire interval [O,x]. 

The equations satisfied by the transmitted flux t(z; x), 
where 

t(z; x) = the expected number of neutrons emergent 
from the end y = 0 of a homogeneous bar of 
length x as a result of having z neutrons 
per unit time incident on the end y= x, (7) 

are similarly derived. We have 

t.,= (u-bz)rt., 

along with the boundary conditions 

teO; x)=O, t(z; O)=z. 

33. Discussion 

(8) 

(9) 

Numerical solution of the foregoing Eq. (32.3), can 
be obtained either by use of (32.2), by means of con­
ventional techniques, or by means of the characteristics. 

In footnote reference 45 will be found a brief discus­
sion of collision processes of this nature with energy de­
pendence. In the remainder of this paper we consider 
only processes without particle-particle interaction. 

46 R. Courant and D. Hilbert, M ethoden der M athematischen 
Physik (Interscience Publishers, Inc., New Yo~k, 1937). 
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34. Time-Dependent Rod Case-Internal Flux 

Thus far we have concentrated our attention on the 
stationary state in dealing with both internal and re­
flected and transmitted fluxes. In this section we shall 
obtain the equations for the internal flux in the rod, 
taking time variation into account. We assume that the 
rod has all the usual properties, and that neutrons in it 
travel with speed e. Thus, a time l1/e is spent in trav­
ersing a distance 11. It is now relatively easy to see that 
if 

u(y,t) = average number of neutrons passing y/sec 
at time t and going to the right; 

v (y,t) = average number of neutrons passing y/sec 
at time t and going to the left; 

then 

u[y+l1, t+ (11/ e)]= u(y,t)(1-ul1)+ul1u(y,t) 

+v(Y+I1, t)ul1+0(11), 

v[y, t+(I1/e)]=v(y+l1, t)(1-ul1)+ul1v(y,t) 

+u(y,t)ul1+0(11), 

giving in the limit as 11 ~ 0 the equations 

(1/e) (au/at)+ (au/ay)=uv, 

(1/ e) (av/ at)- (av/ ay) = uu. 

(1) 

(2) 

(3) 

Equations (3) are subject to the boundary and initial 
conditions 

u(O,t) =0, 

v(x,t) = 1, (4) 

u(y,O) = v (y,O) = 0, 

for the case of the rod with a unit flux at the right end, 
y=x, imposed at t=O. 

This formulation is the classical one. Equation (15.1) 
already mentioned without discussion is the analog of 
(3) for the more complicated geometry. Such equations 
as (15.1) are readily derived using the principles of this 
section. 

35. Time-Dependent Rod Case-Reflected Flux 

We now turn to a formulation of the time depende~t 
rod problem using the basic ideas of invariant imbedding. 
Let us consider a single "trigger" neutron entering the 
rod at x at time t=O. It is then convenient to introduce 

U (x,t) = total number of neutrons reflected from x 
up to time t due to the one trigger neutron 
in at x at time t=O. (1) 

Clearly, 

U(x,t) = it u(x,s)ds, (2) 

where u is the function of Sec. 34, now subject to the 
delta function type initial condition. We propose to 
imbed the rod of length x as usual (see Fig. 16). It 

I r-------------------------+--~I~ 
o x+~ 

FIG. 16. Reflection from a rod of length x+Ll.. 

should be noted that this also provides an imbedding in 
time, and that the important time increment is 211/ e, 
representing the time it takes for a particle to cross 
[x, x+l1] in each direction. 

We find as usual that there may be an immediate 
collision in [x, x+I1], providing a flux out to the right 
of ul1. There is also a single trigger neutron into [O,x], 
and this enters at time t=l1/e. At time s+l1/c let there 
be u(x,s) neutrons/sec emergent at x. Clearly, 

u(x,s) = (au/as) (x,s). (3) 

Some of these neutrons make collisions in [x, x+l1J. 
There is surely a flux out of x+11 of rate u(x,s). How­
ever, half of the fission neutrons return to x at this time. 
These provide a new source into x, and will contribute to 
the total flux out during the remaining t-s units of 
time. Thus 

u( x, t+ 2:) =ul1+U(x,t) 

+ul1 it u(x,s)U(x, t-s)ds+O(I1) (4) 

giving the equation of mixed differential-integral type 

au 2au it -+- -=u+u u(x,s)U(x, t-s)ds, 
ax e at 0 

(5) 

subject to the conditions 

U(x,O)=O, U(O,t)=O. (6) 

The system (5)-(6) has been analyzed rigorously.47 
The convolution form of the integral term makes pos­
sible an explicit analytic representation of the solution 
when the Laplace transform is used. 

36. Modification of Medium during 
Transport Process 

In all that has gone before, we have supposed that the 
properties of the medium have remained unaltered by 
the transport process occurring within it. This is always 
an approximation of greater or lesser validity. . 

Two very interesting processes in which interaction 
with the medium are taken into account are the free 
boundary problems of hydrodynamics, and the Stefan 
problems of heat conduction. As a preliminary to an 
investigation of Stefan-type processes by invariant 
imbedding techniques, we wish to discuss a one-di­
mensional transport process in a rod whose length is 
changing as a function of time. 

47 G. M. Wing, J. Math. and Mech. 7, 757 (1958). 



                                                                                                                                    

298 BELLMAN, KALABA, AND WING 

37. Physical Process and Its Mathematical 
Formulation 

Let us consider a rod which extends from ° to x at 
time t = 0. The rod grows, or erodes, at a specified rate so 
that the position of the left end is given by X L= J(t), 
J(O) =0, while the right end remains fixed, XR=x. (See 
Fig. 17.) A neutron traversing a distance .1 in the rod 
has, as before, probability u.1+0(.1) of suffering a 
collision with elements of the medium. In the event of a 
collision, which produces fission, two neutrons emerge, 
one moving to the left, the other to the right. No 
neutron can reenter the rod once having left it, and all 
neutrons have constant velocity c. A single neutron, the 
"trigger," enters the rod at x at time t= s. We ask for the 
expected total number of neutrons that emerge at the 
right end up to time t, denoting this quantity by 
U(x,s,t). 

It must be noted that the condition [ - f'(t)J<c for 
all t is convenient to prevent neutrons from being rather 
artificially "trapped" in the rod. We shall not discuss 
interesting problems of this nature here. 

To apply the invariant imbedding method, we im­
merse the original process within the class of all processes 
indexed by X>O, and then express the relationship be­
tween neighboring processes. The left ends are uni­
formly to obey the same law, XL= J(t), as that of the 
original rod. 

Let us now analyze the process. At time t=s-.1/c the 
trigger neutron enters at x+.1, and mayor may not 
suffer a collision in passing from x+.1 to x. If it does, a 
single neutron immediately emerges at the right. In 
either event, a neutron passes XR at time t=s. This acts 
as a trigger for the original rod, and produces a flux 
emergent from XR at times t>s. The expected rate of 
emergence of such neutrons is given by u(x,s,t) 
= (au/at) (x,s,t). Neutrons in this flux mayor may not 
suffer collisions with the rod material in going from x to 
x+.1. In either event U(x,s,t) neutrons emerge from 
x+.1.by time t+.1/c. In addition, those neutrons which 
do make collisions in (x, x+.1) at time t', s<t' <t+.1/c, 
contribute trigger neutrons at X R at a rate u.1u(x,s,t') 
+0(.1). The resultant flux out of x+.1 up to time t+.1/c 
is then u.1f.t u(x,s,t') U (x,t',t)dt'+O (.1). All other proc­
esses yield contributions of order 0(.1). Thus we find 

=u.1+ U(x,s,t)+u.1 It u(x,s,t')U(x,t',t)dt' +0(.1). (1) 
8 

Hence, letting .1 ~ 0, we obtain the equation 

au 1 au 1 au ft ----+- -=u+u U(x,s,t')U(x,t',t)dt'. 
ax c as c at • 

(2) 

The conditions imposed on U are 

U(x,s,t) =0, s~t; 

U(x,s,t) = 0, f(s)=X R. 
(3) 

The first merely states that no neutrons emerge by time 
t if the trigger enters at a later time, while the second 
reflects the fact that none can emerge to the right if the 
rod is of length zero when the trigger neutron impinges. 

38. Discussion 

Equation (37.2) has the same general structure as 
that studied in our earlier sections for the case of the rod 
of fixed length with the neutron entering at t= O. It is 
not difficult to reduce (37.2) to the simpler equation 
when J(t)=O. However, the fact that the integral term 
in (37.2) is no longer of convolution form introduces new 
complications in studying properties of the solution. 

III. DIFFUSION THEORY-A LIMITING CASE 
OF TRANSPORT THEORY 

39. Diffusion as a Limiting Process 

In previous sections in this paper, we have investi­
gated a variety of simple models of transport theory by 
means of the functional equation technique of invariant 
imbedding. Neutrons are mathematically abstracted to 
be point particles with finite velocities, while fission and 
scattering are characterized by certain probabilities 
(cross sections) of branching and reversal or reorienta­
tion of direction in the medium within which the process 
is occurring. In the great proportion of cases we assume 
no neutron-neutron interaction, and no change in the 
properties of the medium over time, although we have 
discussed both of these phenomena to sligbt extents, 
Secs. 29 and 37. 

It is of interest for several reasons, from both the 
mathematical and physical points of view, to discuss in 
detail what happens to the various categories of trans­
port equations derived from different applications of 
invariant imbedding as the velocity of the neutron is 
allowed to become arbitrarily large with a corresponding 
increase in the probability of a collision. 

This idea is a quite natural one and one that has been 
pursued by a number of different investigators with 
different aims in mind. Diffusion theory classically has 
been regarded as an approximation to the more rigorous 

xt,=o ~ .. 
1--------1-1 -------+-1 ----il - Neutron 
o XL=f(s- 6/cl XR•• .·6 

'=s-6/c 

o .+6 

• >s 

FIG. 17 . Neutron transport in a rod 6£ varying length. 
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(but not completely rigorous) transport theory under 
the assumption of high velocity and small mean free 
path.4s Furthermore, passage to the limit in the "teleg­
rapher's equation," a linear partial differential equa­
tion of hyperbolic type, has been carried out. 

From another direction, the discrete random walk 
process yields the diffusion equation in the limit. This 
observation has been made the basis for a considerable 
amount of analytic and computational effort, centering 
about the theme of "Monte Carlo" techniques. 

Our principal aim here is to study the limits of the 
nonlinear functional equations obtained from the trans­
port processes with finite velocity, e.g., those appearing 
in Secs. 34 and 35, as the velocity increases without 
bound. In this way, we obtain corresponding results for 
heat or diffusion processes, where the physical picture 
is not as clear. Having obtained the equations in this 
indirect and complex fashion, we can then interpret 
them in such a way as to be able to derive them directly 
by invariant imbedding techniques. In all cases, the 
equations are of the generalized Riccati type which we 
recognize as characteristic of these processes of mathe­
matical physics, when described in invariant imbedding. 

At the present time, we are studying the question of 
treating Stefan-type diffusion problems by a similar 
passage to the limit in the equations derived from trans­
port processes with variable boundaries. This is, as 
might be expected, a complex problem. Some initial 
results have been given in the foregoing, Sec. 37. 

Throughout the sections that follow, we shall use a 
simple generalization of the idealized one-dimensional 
rod process treated in the foregoing pages. In the 
following section, we shall obtain some new equations 
for the flux within the rod, assuming finite velocities 
initially. In Sec. 41, we derive Fick's law for this simple 
process. This is important for our purposes, since it is 
the analysis of this result which suggests the combina­
tions of functions which should be used in the limiting 
case. In Sec. 42, we study the limiting form of the 
internal flux as the velocity becomes infinite, and in 
Sec. 43 the diffusion process giving rise to the function 
obtained in this way is analyzed. 

We then turn to our primary objective, the passage to 
the limit of the nonlinear integro-differential equation 
obtained for the reflected flux in the neutron trans­
port case by means of the technique of invariant 
imbedding. In Sec. 45, we show how to obtain the result 
by direct application of the imbedding technique to the 
diffusion process. 

Throughout this part of the paper, our methods are 
again largely formal, since we are principally interested 
in demonstrating the applicability of invariance prin­
ciples. The existence of relevant limits and the applica­
bility of Laplace transform methods are taken for 
granted in order to arrive quickly at the desired equa-

48 A. Weinberg and E. Wigner, The Physical Theory of Neutron 
Chain Reactors (University of Chicago Press, Chicago, Illinois, 
1958). 

1-1 ---f----..,IIf---------II-source q (tl 
o ll. 

FIG. 18. The physical situation. 

tions. These questions can be studied in a rigorous 
fashion, and for the simple mathematical models con­
sidered here, there is little difficulty in carrying out this 
program. Since, however, we know that the passage to the 
limit involves a reduction from a hyperbolic partial differ­
ential equation to a parabolic partial differential equa­
tion, involving inter alia a redundancy in the initial 
conditions, we can expect some difficulties in the general 
case. The corresponding study for ordinary differential 
equations when a limiting value of a parameter results 
in a drastic change in the order of the equation is of 
some subtlety. Particularly interesting examples of 
equations of this nature occur in various hydrodynamical 
investigations where viscosity plays the role of the 
parameter which approaches zero; d. Wasow.49 

40. Transport Equation 

To begin our work it is necessary to write down some 
transport equations in fairly general form. While some 
of them are not to be found in the literature, they may 
be readily derived by the methods of previous sections. 

Consider a rod of material which transports neutrons, 
and let the neutrons have constant velocity c (mono­
energetic case). The usual collision processes take place 
with the probability of a collision in a length .1 of the rod 
taken to be u.1+0(.1), where u is a constant. On the 
average, 2k neutrons emerge from a collision inside the 
rod, k going to the left and k going to the right. We take 
the rod to extend from ° to x (see Fig. 18), and designate 
the coordinate of an interior point by y. To initiate the 
process, we suppose that there is a time-dependent 
source, q(t) neutrons incident to the left per second at x, 
and none at the end 0. Finally, we suppose that particles 
emergent at ° or x cannot reenter the rod. 

We write 

u(y,t) = the average number of neutrons/sec pass-
ing y at time t and moving to the right, 

v (y,t) = the average number of neutrons/sec pass­
ing y at time t and moving to the left. 

(1) 

Upon using the methods outlined in Sec. 34, it is easily 
found that 

(au/ ay)+ (1/ c) (au/ at)= u(k-l)u+ukv, 

- (av/ ay)+ (l/c) (av/ at)=uku+u(k-l)v, 

u(O,t) =0, v(x,t)=q(t), t;:::O; 

u(y,O) = v (y,O) =0, O~y<x. 

(2) 

For some purposes it is convenient to talk about the 
total flux from time ° to t. We shall consistently use 

49 W. Wasow, Ann. Math. 52, 350 (1950). 
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capital letters to indicate quantities integrated over 
time. Thus 

U(y,t) = it u(y,z)dz, 
o 

(3) 

Q(t)= it q(z)dz, 
o 

etc. It is easy to see that the integrated quantities 
satisfy equations identical to (2) with the lower case 
letters being replaced by capitals. 

At times it will be desirable to make clear the type of 
source in the particular problem under discussion. Hence 
we shall occasionally write 

u(y,t; g), 

U(y,t; g), 
(4) 

etc., to emphasize the source in question. The source 
will be deleted when the meaning is clear. In these cases 
we shall write u(y,t; g)=u(y,t), and so on. In other 
instances the source may be indicated and the depend­
ence upon y or t left out. 

Consider now the case in which the source consists of 
a single "trigger" neutron at t=O. Thus, formally, 
g(t)=a(t), where a is the Dirac delta function. We focus 
attention on the particles reflected from the rod at x, 
writing r(x,t; a) for the number emergent/sec, and 
R(x,t,a) for the total number emergent up to time t. 
Clearly, 

r(x,t; a) = u(x,t; a), 

R(x,t; a)= U(x,t; a). 
(5) 

However, it is again well to regard the x in the argu­
ments of rand R as referring to the length of the rod 
rather than to the coordinates of the end point of the 
rod. With this rather subtle distinction in mind one then 
finds, proceeding as before (Sec. 35), 

aRea) 2 aRea) --+---= uk+ 2u(k-1)R(a) 
ax c at 

f
t (6) 

+uk r(x,z; o)R(x, t-z; a)dz, 
o 

R(x,O; a)=R(O,t; a)=O. 

Notice that this characterizes the reflected flux in a 
fashion independent of the internal fluxes. 

For the corresponding case in which there is a source 
get), we note that the fundamental physical process is 
additive, as a consequence of our tacit assumption that 
there are no interactions between neutrons passing in 
opposite directions, we can write 

R(x,t; q)= ft g(z)R(x, t-z; a)dz. (7) 
o 

To find an equation satisfied by R(x,t; g), we utilize 
the Laplace transform, writing 

R(x,s) = f'" e-8tR(x,t)dt, 
o 

(8) 

with a consistently similar notation for transforms of 
other functions. Then, from (6), with g=a, 

dRL(o) 2 uk 
--+-sRL(a) = -+ 2u(k-l)RL(a)+uksRL2(a), 

dx c s ~) 

RL(O,s; a)=O. 

From (7), 

Hence, 

dRL(g) 2 uk 
--+-sRL(q)=-gL+2u(R-1)Rdq) 

dx c s 

which leads back to 

aR(g) 2 aR(g) 
--+- --=ukQ(t)+2u(k-l)R(g) 

ax c at 

f
t (12) 

+uk. r(x,z;o)R(x,t-z;g)dz, 
o 

R(O,t; g)=R(x,O; g)=O. 

This clearly reduces to (6) when g(t)=o(t). 
We shall derive one other special case of (12), 

corresponding to the case when g(t)= 1. While con­
ceptually this may be a bit more difficult to consider 
than the single-trigger neutron case, it has the mathe­
matical advantage of avoiding the a function. For this 
type of source we write the integrated flux as R(x,t; 1) or 
R(l) and (12) becomes 

aR(1) 2 aR(1) 
--+- --=ukt+2u(k-1)R(l) 

ax c at 

+uk it r(x,z;o)R(x,t-z; 1)dz. (13) 
o 

But, from (7), 

R(x,t; 1)= ft R(x, t-z; o)dz. (14) 
o 

Then we easily find 

aR(1) 2 aR(1) 
--+- --=ukt+2u(k-1)R(1) 

ax c at 

f
t (15) 

+uk r(x,z; 1)r(x, t- z; 1)dz, 
o 

R(O,t; 1)=R(x,0; 1)=0. 
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41. Fickts Law 

If we subtract the second equation of (40.2) from the 
first, we obtain 

(a/ ay)(u+v)+ (l/c) (a/ at)(u-v)= -u(u-v). (1) 

For large c, we expect the second term on the left to be 
small. Hence we formally obtain the relation 

(a/ay) (u+v)= -u(u-v) (2) 

in the "limit of large velocity." Equation (2) is ordi­
narily referred to as Fick's Law,48 which states that the 
net flux is proportional to the gradient of the concen­
tration and in the opposite direction. 

42. Limiting Case Obtained Directly 

To obtain preliminary results we take Laplace trans­
forms of (40.2). Thus, using the notation introduced 
in (40.7), 

(duL/dy)+ (s/c)uL=u(k-l)UL+ukvL, 

- (dvL/dy)+ (s/c)vL=ukuL+U(k-l)VL, (1) 

UL(O,S)=O, VL(X,S)=qL(S). 

After rather extensive but rudimentary calculations, we 
arrive at the relations 

kuqL(S) sinhXy 
~tLCy,s) 

{A coshAx+[(s/c)+(1-k)u J sinhAx}' 
(2) 

qL(S){AcoshXy+[(sjc)+ (1-k)u J sinhAy} 

{A CoshAX+[(S/C) + (1-k)uJ sinhAx} 
where 

A2= (s/c)2+[2(1-k)o/c]s+u2(1-2k). (3) 

We now choose k= l, which means physically that an 
average collision gives rise to one neutron. This choice 
eliminates the last term in (3). Since we seek a diffusion 
type equation, we let c - CX), which is to say, we allow 
the velocity to become infinite. Clearly, to preserve the 
process we must then require that u - 00 in such a way 
that limc/u=D, a constant. Hence, from what has 
proceeded, limX= (sjD)!. 

(It should be noted that a somewhat more general 
result could have been obtained by requiring, instead of 
k=l, that limu2(1-2k)=a:. By so doing we could have 
accounted for cases of absorption or fission. To do this 
here would merely complicate the ensuing calculations.) 

Bearing (50.2) in mind, we set 

jL(y,S)=U[UL(y,S)-VL(y,S)], 

jO.L(Y,S) = limj 1. (y,s). 
(1""'00 

(4) 

Let us consistently reserve the subscript zero to refer to 
quantities in the limit as c _ 00. 

We then discover that 

uqL(S)A coshAY 
jo. 1. (y,s) = -lim -----------­

(1 ..... 00 (X coshAx+[(S/c)+ (u/2)J sinhAx} 

(D-ls)! cosh[y(D-1s)i] 
= -2qL(S) . (5) 

sinh[xCD-rs)lJ 

43. Classical Diffusion Problem 

We now seek an ordinary diffusion problem which 
gives rise to the limiting expression found"in (41.5). It is 
readily verified that if B(y,t) is implicitly determined by 
the relations 

a2B aB 
D-=- 0(0 t)=O 0(x,t)=2q(t), o (y,O) =0, (1) ay2 at' ' , 

then, explicitly, 

(2) 

and 

We may summarize our results thus far as follows: 
If we consider the transport problem formulated in 

(40.2) in the limiting case where c _ 00, c/ IT -+ D, with 
k=t, then the problem is formally equit'alent to the 
classical diffusion problem (1). The quantity 

lim [u(y,t)+v(y,t)] 
.--.00 

may be identified with O(y,t), while 

limu[u{y,t) -v(y,t) ] .. ~ 
corresponds to - a%y. 

It is possible to identify O(y,t) with the total neutron 
flux [see (4O)J although the diffusion may refer as well 
to heat or material concentration. The fact that a 
source of 2q(t) is required as part of the initial conditions 
in the problem (1) may be rather puzzling until one 
notes from (42.2) that, formally, both u(x,t) and v(x,t) 
approach q(t) as c - 00. 

44. Reflected Flux 

Let us now turn to Eq. (40.15) and try to carry out 
the same type of passage to the limit. It is clear that we 
must begin by investigating the quantity 

H(x,t; q)=u{R(x,tj q)-Q(t)}, (1) 

which reduces to u{R(x,t; 1)-t}, when q(t)= 1. Thus, 

R(l)= [H(1)/u J+I, 
r(1)= [h(1)/u J+ 1. 

(2) 
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If we substitute these in (40.15) with k=!, we find 

O't (B(l) ) U it{h(X,Z; 1) } 
=--0' --+t +- +1 

2 0' 2 0 U 

{
hex, t-z; 1) } 

X +1 dz. (3) 
U 

From this we readily obtain 

aB(l) 2u(h(l) ) 1 it 
--+- -+1 =- h(x,z; 1)h(x,t-z; 1), 

ax c U 2 0 

B(x,O; 1)=0, B(O,t; 1)= -ut. (4) 

On passing to the limit as in Sec. 43, we obtain (at least 
formally) 

aBo(l) 1 it 
--_+2D-I=- ho(x,z; l)ho(x, t-z; 1)dz, 

ax 2 0 

Bo(x,O; 1)=0, Bo(O,t; 1)=-00; (5) 

where Bo(x,t; q)=lim~ .... oeB(x,t; q), etc., as agreed. That 
(5) is the correct limiting form may be established by a 
Laplace transform argument similar to that of the last 
section. We omit the details. 

It is of some interest to evaluate Ho. This may be 
done by solving (5). However, it is easier for us to note 
from (42.5) that , 

(D-Is)! cosh[x(D-ls)!J 
ho L(X,S; q)= -2qL(S)--------

. sinh [x (D-Is)!J 

= - [2/(sD)!J coth[x(D-ls)!J, (6) 

when q(t)= 1. We find 

ho(x,t; 1)= __ 2 _{ 1+2 f. exp(- x2n2)} 
(7rtD) t n=1 tD 

=_:Oo(~,_t ), 
x 2 Dx2 

(7) 

where 00 is a theta function. 
The analog of (5) may be derived easily for the case in 

which there is an arbitrary source Q(t). The result is 

aBo(q) 1 i l 

__ +2D-Iq(t)=- ho(x,z; l)ho(x, t~z; q)dz, 
ax 2 0 

Ho(x,O; q)=O, Bo(O,t; q)= - 00. (8) 

We now readily see the following result: 
If we consider the transport problem formulated in 

(40.2) in 'the limiting case then the quantity Bo(x,t; q) is 

formally equivalent to the quantity- (a / ay) foIO(y,z )dzl ll=z 

where 0 is defined by (43.1). Further, Ho(q) satisfies (8) 
with ho(J) given by (5). 

45. Direct Invariant Imbedding Approach 
in Diffusion Theory 

The equations thus far obtained are not new, though 
our approach to them may be somewhat novel. To 
conclude our work here we shall present a method of 
obtaining (44.8) by invariant imbedding techniques 
without venturing outside the confines of ordinary 
diffusion theory. The method described holds promise of 
being applicable in much more complicated diffusion 
processes than that described here, and, in particular, 
may eventually yield new formulations of Stefan-type 
problems. 

To be consistent in our viewpoint, we now think of 
c/>(y,t) as the density of neutrons at y at time t. Then the 
net neutron current density i(y,t) is provided by Fick's 
Law, in the ordinary diffusion approach,48 

i(y,t)= -D(a/ay)c/>(y,t). (1) 

The conservation of particles (since there is no internal 
production when k=!) requires in any interval (a,b) of 
the rod 

a fb 
i(b,t) -i(a,t) = -- c/>(y,t)dy. (2) 

at a 

Let us write, for the net current emerging from our 
rod of length x, k(x,t), Here, again, whjle it is true that 
k(x,t)=i(x,t) we choose to regard the x in the function k 
as referring to the length of the rod. Thus k(x+~, t) is 
the net current emergent from a rod of length x+~, 
source 2q(t) at (x+~), other initial and boundary 
conditions being as before. 

We now try to express k(x+~, t) in terms of k(x,t). 
Upon applying (2) to the rod of length x+.:l, we find 

a fX+~ 
k(lt+~, t)-i(x,t)= -- c/>(y,t)dy, (3) 

at " 

or, integrating over time, 
*~ 

K(x+~, t)-l(x,t)= - f c/>(y,t)dy. (4) 
x 

We now seek expressions for l(x,t) and c/>. To find 
l(x,t) we note that we have thus far disregarded the 
part of the rod from 0 to x. By the continuity conditions 
imposed by diffusion theory, we know that l(x,t) is 
merely the current out of x due to the source c/>(x,t) 
imposed. Let us suppose that a steady source of unit 
strength produces a current out of the rod of p(x,t). 
Then a source (x,t) will produce an integrated current 

l(x,t) = i l 

p(x, t-z)c/>(x,z)dz. (5) 
o 

(This is just Duhamel's principle.46) 
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As yet we have not used (1). From it we find 

¢(x,t)= (AID)k(x+A, t)+2q(t)+0(A). (6) 

On substituting (5) and (6) in (4), we obtain 

K(X+A, t)= it p(x, t-Z){;k(X+A, z)+2q(z) }dZ 

- 2Aq(t)+0(A). (7) 

But, by Duhamel's principle, 

it p(x, t-z)2q(Z)dz=K(x,;). (8) 

Thus 

aK 1 it 
-+2q(t)=- p(x, t-z)k(x,z)dz. (9) 
ax D 0 

This agrees with (44.8) upon identifying k with 
Dho(q) and p with (D/2)ho(1), the factor! occurring 
because p is the current due to a unit source, while ho is 
obtained from a source of strength 2. 

It is clear that 

K(x,O)=O. 

To find K(O,t) we note from (6) that 

¢(O,t) =0= (AI D)k(A,t)+2q(t)+0(A), 

so that for Q(t»O, 

K(O,t) = - OC!. 

Clearly, in case q= 1, we have 

ap 1 it 
-+2=- p(x, t-z)p(x,z)dz, 
ax D 0 

(10) 

(11) 

P(x,O) =0, P(O,t) = - oc!. (12) 

IV. RANDOM WALK AND MULTIPLE SCATTERING 

46. Random Walk 

We now wish to apply invariant imbedding techniques 
to the study of random walk processes. Subsequently, 
we shall consider more general processes of this nature, 
equivalent to multiple scattering processes. 

Consider the finite one-dimensional lattice consisting 
of the integer values between a and b along the real line, 
as indicated in Fig. 19. A particle jumps from lattice­
point to lattice-point in accordance with the following 
law. When at k, there is a probability q(k) of moving one 
unit to the right and a probability p(k)=1-q(k) of 
moving one unit to the left. 

o 0+1 0+2 k b-I b 

FIG. 19. A one-dimensional lattice. 

We wish to determine the probability, that the particle 
starting at k, hits the barrier at a before it hits the 
barrier at b. The process ends as soon as the particle 
lands at a or b-hence, the name "absorbing barriers." 

This is an extension of the classical "gambler's ruin" 
process in which p(k)=q(k)=! for a<k<b. This par­
ticular case can be treated in a very elegant fashion by 
means of Wald's "fundamental identity." See Bellman 
for generalizations to the case of dependent steps.5O 
Another extension is the "game of survival."20 

The classical approach, also based upon the use of 
recurrence relations, proceeds as follows 61 : 

Let 

u(k) = the probability that a particle starting at k 
lands at a before it lands at b. (1) 

Then, considering what happens as a result of the first 
step, for a<k<b, 

u(k)= p(k)u(k-l)+q(k)u(k+ 1), (2) 

with the two-point boundary conditions 

u(a)= 1, u(b)=O. (3) 

We thus face the problem of solving a system of 
linear equations, something we wish to avoid if possible. 
In what follows we shall attack these problems by a 
quite different method. 

47. Invariant Imbedding Approach 

The observation that the desired probability u(k) is 
a function of the endpoints a and b, as well as of k, keys 
our approach. Hence, we should write u(k,a,b) to signify 
this dependence. 

Invariant imbedding, as we have repeatedly stated, 
capitalizes upon this dependence. In place of considering 
a and b to be constants, we consider them to be parame­
ters of equal importance with k, which means that in 
place of treating an individual random walk process, we 
investigate simultaneou"ly an entire family of processes. 
The individual problem is then analyzed in terms of its 
relation to contiguous members of the family. In this 
way, we hope to construct a bridge between particular 
elements of the family of quite simple analytic structure 
and the processes of interest to us. 

Let us then keep one endpoint fixed, say b, and regard 
u as a function of a and k. To make this dependence 
explicit, let us introduce the new function 

f(a,k) = the probability that a particle starting at 
k, a:5:.k:5:.b, will reach a before reaching b. (1) 

Clearly, f(a,k)=u(kj a,b). 
To obtain the required relation between contiguous 

elements, we use the simple geometric fact that a par­
ticle starting at k, and moving one unit in either direc-

50 R. Bellman, Proc. Cambridge Phil. Soc. 53, 257 (1957). 
61 S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943). 
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tion at each stage, must hit a+ 1 before it can hit a. 
This is analogous to the stratification technique we used 
in the discussion of neutron transport and multiplica­
tion. On having reached a+ 1, tl)e particle must then 
reach a before b, if this is to be the case for the original 
process. 

On translating these remarks into algebraic relations, 
and using the elementary rules of probability theory, we 
have 

f(a,k) = f(a+l, k)f(a, a+l). (2) 

Upon iterating this relation, we have 

f(a,k) = f(a, a+1)f(a+ 1, a+2) .. . f(k-l, k). (3) 

an interesting representation for solutions of a Jacobi 
system of equations of the type appearing in (37.2). 

We have deliberately stressed the word "elementary" 
in the foregoing discussion, since we can employ similar 
methods based upon other concepts of probability to 
discuss other kinds of equations. For other methods of 
treating Jacobi equations, see Bellman.52 

48. Function f(a, a+ 1) 

To answer our original question, that of determining 
the value of f(a,k), it remains to evaluate the functions 
of one variable 

g(a) = f(a, a+l), (1) 

defined for a:S;b-1. Clearly, g(b-l)=O. 
If we revert to the description of the original process, 

we obtain the relation 

f(a, a+1)=p(a+1)+q(a+l)f(a, a+2). (2) 

If we use (47.2), we have 

f(a, a+2)= f(a+l, a+2)f(a, a+l). (3) 

If we combine these two expressions, we obtain the 
recurrence relation 

g(a)= p(a+ 1)J[1-q(a+ l)g(a+ I)J. (4) 

Since, as noted in the foregoing, g(b-l)=O, we have a 
simple inductive determination of u(a) for a:S; b-1. 

49. An Alternative Derivation 

The foregoing result can be derived in a way which 
emphasizes its physical significance and its connection 
with previous work on neutron diffusion. Toward this 
end, let us consider the following scattering problem. A 
rod extending from a to b has the property that if a 
particle is at the position k, there is probability p(k) 
that it will be scattered to k-l, and probability q(k) 
= 1-p(k) that it will be scattered to k+ 1. A particle is 
placed at the end a, and we wish to determine the 

probability that it will be "back-scattered" (reflected) 
from a, over all time, rather than be "forward-scattered" 
(transmitted) through the end b. 

We imbed this process within the class of processes 
with "trigger" particles placed at the end I of rods ex­
tending from I to b, with 1= b, b-l, .. " and then write 
a functional equation interconnecting these processes. 

Let us define the function g(a) directly 

g(a) = the probability that over all time a particle 
at a+ 1 will be backscattered to a by the rod 
extending from a+ 1 to b, rather than be 
forwardscattered at b from the rod. (1) 

Observe next that with the particle initially at the 
position a+ 1, there is probability p(a+ 1) that it will be 
scattered directly to the point a. On the other hand, if 
it is scattered initially to the right to (a+ 2), then by 
definition there is probability g(a+ 1) that it will eventu­
ally be back-scattered from the rod (a+2, b) to the 
point a+ 1, from which it may be scattered to the point 
a. Should, however, it once again be scattered to the 
right, to the point (a+2), there is once again proba­
bility g(a+ 1) that it will eventually reach the point 
a+ 1, and so on. In this way we see that 

g(a) = p(a+ 1)+q(a+ l)g(a+ l)p(a+ 1)+q(a+ 1) 

Xg(a+ 1)q(a+ l)g(a+ l)p(a+ 1)+· . " (2) 

which, upon summing the geometric series on the right 
hand side, leads to the equation 

g(a)= p(a+ I)J[I-q(a+ l)g(a+ 1)]. (3) 

This is Eq. (48.4). 
The method that we have used in deriving Eq. (48.2) 

of (3) corresponds abstractly to the method used by 
Ambarzumian6 in discussing diffuse reflection from a 
foggy medium, a process we shall discuss later, and to 
the method used above in handling some neutron 
transport processes. 

Similarly, the discussion in Sec. 47 may be reinter­
preted to yield the flux scattered from the end a of a rod 
as a result of an internal source of particles. 

50. Expected Sojourn 

Let us now introduce the function 

w (a,k) = the conditional expected time required for 
the particle to reach a before reaching b, 
starting from k, assuming a unit step takes 
unit time. (1) 

By this we mean the expected time required to reach a, 
under the assumption that a is reached before b. Then, 
the same foregoing reasoning yields the relation 

w(a,k)=w(a+l, k)+w(a, a+l). (2) 
62 R. Bellman, Introduction to Matrix Analysis (McGraw-Hili 

Book Company, Inc., New York, 1960). To obtain an analytic expression for w(a, a+ 1), we 
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combine the two expressions 

w(a, a+1)=p(a+1)+q(a+1)[w(a, a+2)+1], 

w(a, a+2)=w(a+1, a+2)+w(a, a+1). (3) 

The result is 
1 q(a+1) 

w(a, a+1) + w(a+1, a+2). (4) 
p(a+ 1) p(a+ 1) 

Iteration yields the infinite series 

1 q(a+l) 
w(a,a+1) +----­

p(a+l) p(a+2)p(a+1) 

q(a+1)q(a+2) 
+ +''', (5) 

p(a+3)p(a+2)p(a+ 1) 

with the convention that the series terminates if b is 
finite. 

51. Characteristic Functions 

As we have pointed out in the foregoing, whenever an 
expected value can be determined, the same techniques 
yield relations for generating functions. Let 

y(a,k,s)=E(e iu), (1) 

random walk in which the energy of the particle changes 
as a result of its wandering, while the second pertains 
to a two- or-three-dimensional random walk process in 
which the direction of motion changes as a result of each 
collision. 

Both of these can, in discrete form, be considered to 
be particular cases of a process of the following type: 

"A particle in state i, i= 1,2, "', N, can occupy any 
of the lattice points k between a and b. Let 

Pij(k) = the probability that a particle at k in state 
i will go one unit to the left, and arrive in 
state j, i, j= 1,2, ... , N, 

qij(k) = the probability that a particle at k in state (1) 
i will go one unit to the right, and arrive in 
state j, i, j = 1, 2, ... , N."54 

Let us then define the N2 functions 

uij(a,k) = the probability that a particle starting at 
k in state i will hit a in states j before 
reaching b in any state. (2) 

Proceeding as in the foregoing sections, we obtain the 
relation 

where z=z(a,k) is the random variable equal to the time Consequently, if we introduce the matrix function 
spent by the particle in going from k to a, without ever U( k) [ (k)] ( ) 
h
.. b a, = Uij a, " 4 
lttmg . 
Since we derive the basic relation 

z(a,k) = z(a+ 1, k)+z(a, a+ 1), 

we have the functional equation 

y(a,k,s)=y(a+1, k, s)y(a, a+1, s). 

It is now· not hard to show that 

(2) 

(3) 

yea, a+ 1) = p(a+ 1)ei8+q(a+ 1)ei8y(a, a+ 2), 

yea, a+2)=y(a+1, a+2)y(a, a+1). (4) 

From these we obtain the recurrence relation 

yea, a+1) 
= p(a+ 1)e i8/[l-q(a+ 1)ei8y(a+ 1, a+2)], (5) 

which can be used to obtain higher moments. 53 

52. More General Random Walk Processes 

Similar methods can be applied to random walks 
which allow steps of different units at each stage. 
Abstractly, these methods will be equivalent when 
vector-matrix notation is introduced. 

53. Multiple Scattering 

In this section, we wish to consider two processes of 
particular interest. The first concerns a one-dimensional 

63 R. Bellman and R. Kalaba, J. Math. and Mech. ?, 411 
(1960). 

U(a,k)= U(a+1, k)U(a, a+1), (5) 

the a~alog of (47.2). Once again, we see that the 
problem has reduced to a determination of a function of 
a alone, U(a, a+1). 

54. Determination of U(a, a+l) 

Proceeding as before, we have 

Uij(a, a+ 1)= Pij(a+1)+ Lm qim(a+ 1)umj(a, a+2), (1) 

or, if G(a)=[uij(a, a+1)], P(a)=[pij(a)], Q(a) 
= [qij(a)], 

G(a)=P(a+1)+Q(a+1)U(a, a+2). 

If we use (53.2), we obtain the relation 

U(a, a+2)= U(a+1, a+2)U(a, a+1). 

If we use this in (2), we have 

G(a) = P(a+ 1)+Q(a+ 1)G(a+ 1)G(a), 
or 

G(a) = [I -Q(a+ 1)G(a+ 1)]-lP(a+ 1). 

(2) 

(3) 

(4) 

(5) 

Since G(b-l)=O, once again we have a direct iterative 
technique for determining G(a), and thus U(a,x). 

64 It is convenient here to reverse the index order as compared 
to previous usage (see Sec. 8). 
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55. Discussion 

It is clear that in the same way we can obtain 
multidimensional analogs of the results for the expected 
sojourn and generating function. 

Turning from the analytic aspects, let us examine the 
computational aspects. Approaching the problem along 
conventional lines, we obtain a system of linear equa­
tions of the form 

uij(k) = Lm PimUmi(k-l)+ Lm qim(k)umi(k+ 1). (1) 

On keeping j fixed, we have a system of order N(b-a). 
If N = 10, and b-a= 100, this is order 1000, a respect­
able and even formidable number, even in the light of 
modern devices. 

On using the technique described in the foregoing, the 
solution is made to depend upon the inversion and re­
peated multiplication of lOX 10 matrices, a complicated, 
but far more feasible process. 

56. Time-Dependent Processes 

Let us now consider the one-dimensional random walk 
process in which each stage consumes one time unit. Let 

u(a,k,t)=the probability of going from k to a in 
time I, without ever hitting b. (1) 

As we shall see, we derive equations completely analo­
gous to those exhibited in the foregoing for the gener­
ating function 

00 

F(a,k,t,r)~F(a,k)= L u(a,k,l)rt. (2) 
t~O 

As in the previous sections, we obtain the fundamental 
relation 

t 

u(a,k,t)= L u(a+l, k, s)u(a, a+l, t-s), (3) 
8=0 

and once again derive the fundamental relation 

F(a,k) = F(a+ 1, k)F(a, a+ 1). (4) 

Furthermore, 

u(a, a+ 1, I) = p(a+ 1)0(1,/) 
+q(a+ 1)u(a, a+ 2, 1-1), (5) 

for t?l, where 

o(l,t)= 1, t= 1, 
=0, t~1. 

Thus, multiplying (5) by rt and summing over I, 

(6) 

F(a, a+ 1)= p(a+ l)r+q(a+ l)rF(a, a+2). (7) 

From here on the argument proceeds as before. The 
final result is 

F(a, a+l) 
= p(a+ l)rj[l-q(a+ l)rF(a+ 1, a+2)]' (8) 

Equation (7) can be derived directly making use of 
the properties of the process and of generating functions. 
It should be compared with (51.5). 

V. RADIATIVE TRANSFER 

57. Introduction 

In these last few sections we shall discuss a problem 
arising in the field of radiative transfer. Abstractly, such 
cases are equivalent to appropriate neutron transport 
problems, and therefore the material appearing here 
could very well have been placed in earlier sections. 

. However, since it was in the solution of problems of this 
genre that Ambarzumian6 first successfully used his 
invariance principle and here, too, that Chandrasekhar 
developed his extensive generalizationS it seems fitting 
that we leave these problems in their original setting. 
Our discussion follows that Of66 in which the principle of 
invariant imbedding was first sketched. 

58. Physical Model 

Assume that parallel rays of light of uniform intensity 
are incident on an inhomogeneous slab composed of a 
substance which absorbs and scatters light. Our ob­
jective is to determine the intensity of the diffusely 
reflected light as a function of the incident light, the 
properties of the slab, and the angle of the emerging 
rays. 

We shall assume the slab has the following absorption 
and scattering properties: 

1. In traversing a distance d in the slab a portion of 
a beam J is reduced to intensity J(I-ad)+O(d). A 
fraction A of the intercepted beam is reradiated, while a 
fraction I-A is permanently lost (absorbed). The 
quantities A and a may be dependent upon the distance 
from an edge of the slab. 

2. Radiation is scattered isotropically. 

In the light of our previous work, it is most con­
venient to consider the light radiation as composed of 
photons; particles, then, which behave, for our purposes, 
just as neutrons do. 

We must note, too, that in reality not only the angles 
if; and (j (Fig. 20) arise but also the corresponding 
azimuthal angles. The latter may be neglected in our 
analysis because of the symmetry of the problem. 

o 

FIG. 20. Cross section of 
slab with incident and re­
flected rays. 

66 R. Bellman and R. Kalaba, Proc. Nat!. Acad. Sci. U. S. 42, 
629 (1956). 
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We define a reflection coefficient R(x,l/t,O), giving the 
intensity of radiation reflected in direction ° per unit 
area on the face of the slab due to a beam of unit in­
tensity incident at angle l/t, the thickness of the slab 
being x. Otherwise put, R is the number of photons per 
unit time out of a unit area on the slab at angle 0, due 
to a unit flux (one photon per unit area per unit time) 
impinging at angle l/t. 

It is now easy to write down the equations for R, 
either using directly the fundamental principles we have 
developed, or applying the general flux equation (26.2). 
We find, recalling that integrations over the azimuthal 
angles are necessary, even though R is independent of 
them, 

aR a(x)X(x) (1 1) 
a(x) -+- R(x,l/t,(J) 

ax 411' cosl/t cosO cosl/t 

a(x)X(x) £,,/2 

+ R(x,l/t',O) sinl/t'dl/t' 
2 cosl/t 0 

a(x)X(x) £,,/2 sinO' 
+ R(x,l/t,(J')--dO' 

2 0 cosO' 

£
,,/2 sinO' 

+a(x)X(x)1I' -R(x,l/t,O')dO' 
o cosO' 

£
,,/2 

X R(x,l/t',O) sinl/t'di/;'. 
o 

59. Comparison with the Results of 
Ambarzumian 

(1) 

Equation (58.1) is considerably more general than the 
original result of Ambarzumian, since that writer con­
sidered a semi-infinite slab, with a= 1 and X constant. 
Our result should hence reduce to his when we eliminate 
the x dependence and set aR/ (Jx= O. The reader will 
find, however, that the equations still differ considerably. 

The reason for this apparent discrepancy lies in the 
way we have chosen to measure flux throughout this 
paper. While classically flux is measured in terms of the 
number of particles per unit time crossing a unit area 
normal to the direction of the particle, we have chosen 
instead to talk in terms of the number per unit time 
through a unit area on the (geometric) surface through 
which the particles are passing. 

A bit of philosophy may be appropriate. The trans­
port equation for the flux of particles internal to a body 
ordinarily is quite independent of the boundaries of the 
medium itself. The geometry is brought in through the 
auxiliary boundary conditions. Thus a person in outer 
space, with no frame of reference, would rather naturally 
measure flux in the classical way. 

The equations of invariant imbedding, however, de­
pend deeply and inherently upon the boundaries of the 
body under consideration. It therefore seems natural to 

define the flux with direct reference to those boundaries. 
We have found this the easier way conceptually. 

In any event it is possible to convert from one defini­
tion of flux to the other without great effort. Consider 
the case of Sec. 58, and let us define I(x,l/t,(J) as the 
reflected intensity in the classical sense: I (x,l/t,O) is the 
number of photons reflected from x travelling in direc­
tion (J per unit time through a unit area normal to that 
direction due to one photon incident on x per unit time 
per unit area normal to the direction l/t. Then it is easy 
to see that 

I (x,l/t,(J) = R(x,l/t,O) (cosl/t/ cosO). (1) 

If we use the foregoing transformation, we obtain 
Ambarzumian's equation. 

VI. SUMMARY 

60. Review of Basic Techniques 

Having covered some quite diverse parts of mathe­
matical physics, we feel that it is important to state to 
the reader what our basic ideas and objectives have 
been, and what have been the methods we have em­
ployed toward obtaining these goals. 

We start with the fact that any physical process can 
be described in a variety of different ways, leading to a 
number of different analytic paraphrases. As soon as 
this most important fact is accepted, then necessarily 
the premise must be accepted that some descriptions 
will be significantly better than others for the study of 
particular properties of a process. 

We have hinged our description of physical processes 
upon the in'IJariance concept. By this we mean that we 
have consistently introduced state variables and written 
our equations in such a way as to stress the idea that any 
individual process is to be considered as a member of a 
family of related processes. The advantage to be gained 
from this point of view resides in the common observa­
tion that the properties of a particular member of a set 
can often be easily understood in terms of the properties 
of contiguous elements, although often quite puzzling to 
comprehend in isolation. This principle of continuity, 
one of the most powerful and versatile tools in the 
mathematician's hopechest, is basic also in the biological 
world. 

The usual equations of mathematical physics arise 
from the application of imbedding techniques, by means 
of the introduction of fluxes at arbitrary points, by 
means of the introduction of time, and so on. By 
introducing other parameters of significance and apply­
ing invariance principles in a different fashion, we have 
obtained new equations which possess certain compu­
tational and analytic advantages over the classical 
formulations. We have indicated how one can pass back 
and forth from one type of equation to the other. 

One of the major difficulties of the classical approach 
lies in the fact that it leads to boundary value problems 
which in turn lead to Fredholm integral equations. 
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Ultimately, for the solution of these problems in nu­
merical terms, we are forced to the solution of large 
systems of linear equations. This is a most subtle and 
difficult problem and one for which modern digital 
computers are not well suited. 

The new approach presented here leads to the solution 
of initial value problems, not necessarily in time but in 
other meaningful physical parameters, and compu­
tationally to the iteration of nonlinear transformations. 
This latter is a task well designed for the digital com­
puter. Finally, we note that our formulation very often 
corresponds to the way the data is obtained experi­
mentally. 

Let us note in passing that there are available other 
techniques for converting boundary-value problems in­
volving Fredholm-type integral equations to initial 
value problems relying upon Volterra-type integral 
equations. Generalizing results of Holmgren and Levi, 
Muntz discussed how this could be done for the heat 
equation, while Milgram and Rosenbloom used a differ­
ent device for treating generalized potential theory, in­
volving the harmonic integrals of Hodge. Our methods 
are quite different from theirs, since ours always involve 
a variation of the domain, while theirs keep the domain 
fixed. 

Secondly, let us point out that the Riccati equations 
which are characteristic of our approach can be obtained 
in a number of different ways in dealing with ordinary 
second-order differential equations. The derivation we 

employ is quite different from that obtained by a simple 
change of a dependent variable, and different also from 
that resulting from dynamic programming. Our methods 
lead naturally to the generalized Riccati equations 
corresponding to partial differential operators. 

The functions with which we deal, the reflection and 
transmission functions, appear to be basic functions of 
analysis. This is to be expected since they represent 
fundamental physical quantities. If we use these func­
tions we obtain a new approach to the problems of 
existence and uniqueness of solutions of the classical 
equations, and new representations for the solutions of 
these equations. What is most important is that these 
methods are independent of characteristic value and 
spectral theory. Results of this type will appear in the 
near future. 

Although we have from time to time mentioned vari­
ous computational advantages of our procedures, we 
have not included any calculations in this paper for 
several reasons. In the first place, the paper has already 
assumed a certain unwieldy length. Far more important 
is the fact that numerical solution of significant prob­
lems introduce a number of nontrivial questions, regard­
less of the method that is used. Any who have engaged 
in the computational solution of equations will sadly 
testify to this. Consequently, we feel that it is better to 
leave the calculations for a separate study, devoted 
merely to this aspect. 
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The system considered is an n-dimensional cubic crystal with nearest-neighbor central and noncentral 
harmonic forces in which the mass M of one of the lattice particles is relatively large. It is assumed that the 
velocities and positions of the light particles in the system (mass m) are normally distributed, at time t=O, as 
in thermal equilibrium. The conditional velocity distribution for the heavy particle at time t is then a normal 
distribution with a time-dependent mean value. This mean value is the velocity autocorrelation function. 
The dispersion of the distribution is shown to be a simple function of the autocorrelation. In the limit 
M/m»1 in the one- and two-dimensional lattices, the autocorrelation function is, respectively, a damped 
exponential and a damped oscillating exponential. These different types of statistical behavior are related to 
the different dynamic properties of the medium with which the heavy particle interacts. 

I. INTRODUCTION 

I N this paper we study a classical mechanical model 
which exhibits Brownian-like motion. The model is 

a modification of the simple n-dimensional cubic type 
crystal lattice with nearest-neighbor central and non­
central harmonic forces. There have been a considerable 
number of investigations of the properties of such 
models recently.l-3 Therefore, it is interesting to note 
that the dynamical properties of the one-, two-, and 
three-dimensional lattices were studied extensively by 
Hamilton3 in 1839. The modification of the lattice model 
in this paper is made by increasing the mass of one of 
the lattice particles to a relatively large value. The 
conditional velocity distribution function for the heavy 
particle is obtained from the solution of the equations 
of motion of the entire lattice. Only one statistical, or 
nonmechanical, element is introduced, namely, the 
initial positions and velocities of the particles in the 
crystal are assumed to be canonically distributed.4 

There is a marked contrast between the detailed micro­
scopic treatment in this paper and the phenomenological 
treatments of Brownian motion which start with a 
Langevin or Fokker-Planck equation.6 

* Parts of this paper were presented at the Annual meeting of 
the American Physical Society (January 27-30,1960). R. J. Rubin, 
Bull. Am. Phys. Soc. Ser. II,S, 7 (1960). 

1 E. W. Montroll, Proceedings of the Third Berkeley Symposium 
on Mathematical Statistics and Probability (University of California 
Press, Berkeley, California, 1956), Vol. 3, p. 209. 

2 P. Mazur and E. W. Montroll, J. Math. Phys. 1, 70 (1960). 
3 See A. W. Conway and A. J. McConnell, The Mathematical 

Papers of Sir William Rowan Hamilton (Cambridge University 
Press, New York, 1940), Vol. 2, pp. 451-582, 599. 

4 The one-dimensional lattice containing a heavy particle has 
been studied by two authors: (a) R. J. Rubin, Proceedings of the 
International Symposium on Transport Processes in Statistical 
Mechanics, August 1956, I. Prigogine, Editor (Interscience Pub­
lishers, Inc., New York, 1958), p. 155. In this paper a velocity 
autocorrelation function for the heavy particle is obtained. [Al­
though Eq. (14) of the reference is in error, the final form of the 
autocorrelation function Eq. (19) is correct.] (b) P. C. Hemmer, 
footnote reference 6, obtains the conditional velocity distribution 
function in the one-dimensional case. 

6 S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943). See also 
footnote references 4a and 4b. 

In Sec. II the equations of motion of the lattice are 
solved, and a simple expression is obtained for the 
velocity of the heavy particle at time t as a linear com­
bination of the initial positions and velocities of all the 
particles in the lattice. In Sec. III it is assumed that the 
initial positions and velocities of the light particles in 
the lattice are canonically (normally) distributed and 
that the initial velocity of the heavy particle is Vo. Under 
these conditions, an expression is obtained for the 
probability that the velocity of the heavy particle is v 
at time t. This expression for the conditional velocity 
distribution function is a gaussian distribution whose 
mean and standard deviation are both related to the 
velocity autocorrelation function. In Sec. IV explicit 
expressions are obtained for the velocity autocorrelation 
function in the case of the one- and the two-dimensional 
lattices. In the one-dimensional case, the known results 
that the autocorrelation function is a simple exponential 
is obtained. In the two-dimensional case, the auto­
correlation function is shown to be an exponentially 
damped, oscillating function of the time. We note that 
the autocorrelation functions obtained from the one­
and two-dimensional lattice models have the same form 
as the autocorrelation functions derived from phe­
nomenological Langevin equations for a free and for a 
harmonically bound particle, respectively. 

II. DESCRIPTION OF MODEL AND SOLUTION 
OF EQUATIONS OF MOTION 

We consider a modification of an n-dimensional 
lattice with nearest-neighbor central and noncentral 
harmonic forces and with periodic boundary conditions. 1 

There are assumed to be 2N + 1 lattice points in each of 
the lattice directions, labelled from - N to + N. A 
particle in the lattice is designated by the n-component 
vector R whose components rj are integers such that 
-N~rj~N, j=l, "', n. The principal modification 
which is introduced into the conventional model is that 
the mass of particle 0= {O, .. " O} is M, whereas the 

6 P. C. Hemmer, Det Fysiske Seminar i Trondheim 2 (1959). 
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masses of the other particles are m. A second modifica­
tion, which is introduced merely as a formal convenience 
to make the potential energy matrix positive definite, is 
that each particle is held to its lattice site by a har­
monic force (strength=k'). Ultimately we shall be in­
terested in the limit k' ~ 0. The equations of motion of 
the system for particle displacements in a given lattice 
direction are independent of the displacements in other 
lattice directions.! The equations of motion for the 
x component are 

[m+ (M -m)oo,R]xtt[R,t] 

n 

= -k'x[R,tJ+ L: k;{x[R+Ij, t] 
;=1 

- 2x[R,t]+x[R -Ij, t]}, (1) 

where a SUbscript t denotes differentiation with respect 
to time and x[R,t] is the displacement from equilibrium 
in the x direction of particle R. The vector If is a unit 
vector in the lattice direction j. The various nearest 
neighbor force constants are denoted by kf and the 
Kronecker delta· 

{
1 if R=O 

OO,R= ° if R¥O. 

Equations (1) are solved by introducing a generating 
function. If we multiply the equation for xtt[R,t] by 
(2N+1)-nI2 exp[(27ri/2N+1)S·R] and sum the result­
ing set of equations, we obtain 

Gtt[S,t]+ (2N + 1)-nI2QXtt[O,t] 

= -,),'G[S,t]- 2 i: ,),f{ 1-COS-!~S~ }G[S,t], (2) 
;=! 2.1\+1 

where the vector S has integer components SI, "', s" 
and -i.V~Si~)r. The generating function G[S,t] is, by 
definition 

[ 
27ri ] G[S,t] = (2N+1)-nI2 L: x[R,t] exp --S·R, (3) 

• {R) 2N+l 

where the sum is over all vectors R. The parameters Q, 
')", and ')'f are, respectively, (M -m)/m, k'/m, and 
kim. Equation (2) for the generating function can be 
solved by the method of Laplace transforms. 

The Laplace transform of Eq. (2) is 

-Gt[S,O]- pG[S,O]+ p2r[S,p] 

- (BT + 1)-nI2Q{ Xt[O,O]+px[O,O]- p2~[O,p]} 

= {-')"-2 i:. ')'f(1-COS 27rsj ) }r[S,p], (4) 
i=1 2N+1 

where r[S,p] is the Laplace transform of G[S,t], r[S,p] 
= .1'0'" G[S,t]e-Ptdt, and KO,p] is the transform of 
x[O,t]. In fact, there is the general relation 

r[S,p]= (2N+1)-nI2 L: ~[R,p] exp { 21.-i S.R}. (5) 
{R) 2N+1 

Gt[S,O] and G[S,O] contain all initial conditions. If we 
solve Eq. (4) for r[S,p], we obtain 

r[S,p] 
Gt[S,O]+ pG[S,O]+ (2N + 1 )-n/2Q{ Xt[O,O]+ px[O,O] - p2~[O,p]} 

(6) 

It follows from the orthonormality of the quantities, 
(2N+1)-nI2 exp{(27ri/2N+1)S·R}, that if both sides 
of Eg. (6) are multiplied by (2N+1)-nI2 and summed 
over all values of {S} that 

~[O,p]= L:' {xt[R,O]+px[R,O]H"[R,p] 
{R} 

+ (Q+l){xt[O,O]+px[O,O]H"[O,p] 

-QP2KO,p]t[O,p], (7) 

where the prime on the summation sign indicates that 
the R=O term is omitted, and where 

r[R,p] = (2N + 1 )-n/2 

xL: p2+')"+2 L: "Ii 1-cos--
J
-

[ 
n ( 27rs' )fl 

{SJ i=1 2N+1 
2 . 

xexp{~S'R}. (7a) 
2N+l 

On solving Eq. (7) for KO,p], the expression is 

~[O,p]= (Q+1){Xt[O,O]+px[O,O]} 

Xt[O,p]{ 1 + QP2t[O,p ]}-1 

+ L:' {xt[R,O]+px[R,O]} 
{R} 

Xt[R,p]{1+QP2t[O,p]}-I. (8) 

Expressions for x[O,t] and Xt[O,t] can be obtained by 
inverting the Laplace transforms in Eg. (8). In the next 
section, we will be exclusively concerned with the 
expression for Xt[O,t], 

Xt[O,t] = Xt[O,O]Xt[O,t]+x[O,O]Xtt[O,t] 

1 +-L:' {xt[R,O]Xt[R,t] 
Q+1 {RJ 

+x[R,O]Xtt[R,t]} , (9) 
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where 
Q+ 1 i r[R,p JePtdp 

X[R,tJ=- . 
21ri L 1 + QP2r[0,p J 

(10) 

The path of integration in Eq. (10) is a line parallel to 
the imaginary p axis and to the right of all singularities 
of the integrand. Equation (9) is an expression for the 
velocity of particle ° as a linear combination of initial 
positions and velocities.7 

We will now show that the set of functions, {X[R,tJ}, 
from which the time-dependent coefficients in Eq. (9) 
can be derived, is a solution of the equations of motion 
(1) for a particular initial condition. Consider the 
expression Eq. (6) for the generating function for the 
case in which the only nonzero initial value is Xt[O,OJ, i.e., 

x[R,OJ=O, all R 

xt[R,OJ= OR,O. 

The Laplace transform of G[S,tJ is, in this case, 

r[S,pJ 
(2N+ 1)-n/2{Q+ 1-Qp2KO,pJ} 

p2+y'+2 i:. 'Yj(l-COS 21rsj ) 
i-I 2N+1 

If Eq. (11) is multiplied by 

(2N+1)-n/2 exp{ - (21ri/2N+1)S·R}, 

(lla) 

(11) 

R¢O and summed over all S, one obtains an expression 
for ~[R,pJ, the transform of x[R,tJ [see Eq. (5)J, in 
terms of the transform of x[O,tJ, 

~[R,pJ= (Q+1)r[ -R,pJ-Qf~[O,pJr[ -R,p]. (12) 

The expression for ~[O,p J for the initial condition (lla) 
is, according to Eq. (8), 

~[O,pJ= (Q+l)r[0;pJ/(1+QP2r[0,pJ). (13) 

On substituting this expression in Eq. (12), ~[R,pJ can 
be rewritten as 

KR,pJ= (Q+1)r[ -R,pJ/(1+Qfr[O,pJ). (14) 

Upon inverting Eqs. (13) and (14), it is seen that" 

x[R,tJ=X[ -R,tJ 
=X[R,tJ, (15) 

where X[R,tJ is defined in Eq. (10). It has thus been 
shown that the time-dependent contribution to Xt[O,tJ 
of arbitrary nonzero values of x[R,OJ and xt[R,O] in 

Eq. (9) can be expressed in terms of time derivatives of 
the function X[R,tJ, where the functions {X[R,tJ} 
constitute a set of solutions of the equations of motion 
(1) for the initial conditions (lla). 

In order to express concisely the relation which has 
been established between the time-dependent coeffi­
cients in Eq. (9) and the solution of the equations of 
motion, {X[R,tJ}, and to simplify the rest of the analy­
sis, we introduce a matrix notation. The equations of 
motion (1) in matrix form are 

MXtt(t) = VX(t) , (16) 

where M is the diagonal mass matrix with elements 

mOR,R,+ (M -m)oo,R', 

where V is the potential energy matrix for the system of 
particles [the matrix of the coefficients on the right-hand 
side of Eq. (l)J, and where X(t), the particular solution 
chosen for illustration, is the vector whose components 
are X[R,t]. In terms of the foregoing quantities, the 
velocity of particle 0, Eq. (9), at time t, for arbitrary 
initial conditions, can be rewritten as 

Xt[O,tJ = M-l{ Xt(O) TMXt(t) +x(O) TMXtt(t)} 
= M-I{xt(O) TMXt(t)+X(O)TVX(t)} , (17) 

where use is made of Eq. (16), where the initial condi­
tions x[R,OJ and xt[R,OJ are expressed as the vectors, 
x(O) and x/CO), and where X(O)T denotes the transpose 
of x(O). 

III. VELOCITY DISTRIBUTION FUNCTION 

One of the principal objectives of this work is to 
obtain a conditional velocity distribution function for 
the heavy particle 0. At the end of the preceding section, 
an explicit expression for the velocity of particle ° at 
time t was obtained in the form of a linear combination 
of the initial conditions Xt(O) and x(O) for the system of 
(2N+1)n particles. In order to proceed, it will be as­
sumed that the initial positions and velocities are 
canonically distributed, i.e., the distribution function 
for the initial x components of motion is 

W[Xt(O),x(O)J 
=;n exp{ - (1/2kT)[xt(0)TMXt (0) +x (O)TVx (0) J}' 

(18) 

where ;n is a normalization constant. With this assump­
tion, the expression for the conditional velocity dis­
tribution, P(v,t I Vo,O) , the probability that the velocity 
of particle 0 is v at time t when it was Vo at time zero, is 

f"'··· f dXt(O) f"'··· f dx(O)o{v-M-l[Xt(O)TMXt(t)+x(O)TVX(t)J}o{Xt[O,OJ- vo}W[Xt(O),x(O)J 
-co -00 , 

P( v,t I vo,O) 

f"'· .. f dXt(O) f"'· .. f dx(O)o{Xt[O,OJ-vo}W[Xt(O),x(O)J -- -'" (19) 

7 Similar types of results have been obtained for the uniform lattice by Hamilton3 and more recently by R. E. Peierls, Proc. 
Nat!. Inst. Sci. India 20, 121 (1954). 
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where o{ } is a Dirac 0 function. By using an integral 
representation for the 0 functions in Eq. (19), the inte­
grations can be performed (see Appendix A), and the 
following simple result is obtained: 

P(v,t I vo,O) = [2?rkTM-l{ 1-X t2[0,tJ} J-! 

[ 
M{:V-VoXt[O,tJP] 

Xexp , 
2kT{1-Xt2[0,tJ} 

(20) 

where X t[O,tJ is the velocity of particle ° at time t corre­
sponding to the special initial conditions (lla). This 
result is a generalization of the results of Mazur and 
Montro1l2 and Hemmer.6 

The conditional mean velocity, or autocorrelation 
function of the heavy particle, is 

(v(t» = VoXt[O,t] (21) 

and the dispersion about the mean (f2(t) = (v2(t» - (V(t»2 
is 

u2(t)=kTM-l{1-Xt2[O,tJ}. (22) 

sions for Xt[O,tJ in the case of the one- and two­
dimensional lattices when m/M«1 (the n-dimensional 
lattice will be referred to as an nD lattice). The passage 
to the limit "I' = ° is a trivial one. The parameter ,,/' was 
introduced to facilitate the integrations in Eq. (19). In 
the limit N = 00, the summation in Eq. (7a) is replaced 
by an integration and the discrete variable 21l"sj(2N + 1) 
by the continuous variable Bj • According to Eqs. (10) 
and (7a), in the limit ,,/'=0 and N= 00, 

Q+1 f ePtdp 
Xt[O,tJ=- , 

21l"i L QP+ (p~"[O,p J)-1 
(23) 

where 

n 

X[p2+2 L: "/j(1-cOSBj)]-I. (24) 
j=l 

The following alternative form of t[O,p] can be obtained 
from Eq. (24) by replacing 

Thus the time-dependence of both parameters charac­
terizing the distribution function P(v,tlvo,O) is deter­
mined solely by the autocorrelation function Xt[O,t]. It 
should be mentioned here that it can easily be shown by 
that the distribution function for the velocity of particle 

n 

[p2+2 L: 'Yj(1-cOSBj)J-l 
j=1 

0, w(Xt[O,O]), which was assumed initially, is preserved 
in the course of time. That is, w(Xt[O,OJ) defined by 

w(Xt[O,OJ) 

= Joo ... Jf dXt(O) J"' ... J dx(O)W[Xt(O),x(O)J 
-00 -00 

= (2TrkTM-I)-1 exp{ -Mx?[0,OJ/2kT}, 

where the prime indicates that the integration over 
XI[O,OJ is omitted, has the same form as the velocity 
distribution for particle ° at time t 

P(v,t) = Joo ... J dXt(O) Joo ... J dx(O) 
-~ -00 

x o{ v- M-I[X(O)TMXt(t)+x(O)TVX(t)J} 

XW[Xt(O),x(O)J 

= (27rkTM-I)-! exp{ -Mv2/2kT}. 

Obviously, this result is to be expected. Nevertheless, it 
is surprising that it can be obtained in such a trivial 
fashion. 

IV. PROPERTmS OF THE VELOCITY AUTO­
CORRELATION FUNCTION X,[O,t] 

In this section we first discuss some general properties 
of the autocorrelation function Xt[O,tJ in the limits in 
which "I' ~ ° and N ~ 00 ; and then we obtain expres-

and noting that the integral representation of the Bessel 
function Jo(x) is (21l")-1f-,," dB exp( -ix cosO), 

t[O,p] = f'" du 
o 

n 

Xexp( - p2u)II {exp( - 2'Yju)Jo(2i-yju)}. (25) 
i=1 

In the 1D and 2D lattices, t[O,p] is, respectively,S 

t[O,p] = p-1[p2+4'Y ]-! (26) 
and 

t[O,p] = (p2+4'Yl)-! (p2+4"/2)-! 
X 2F l[!,!; 1; 16"11"12 (p2+4'YI)-1 (p2+4'Y2)-I], (27) 

where 2F I[ ] is a hypergeometric function. 
As an indication of different dynamical behavior in 

the 1D and 2D lattices, consider the value of the 
following integral: 

.:lX= f'" Xt[O,t]dt. 
o 

(28) 

The distance .:lX is the net displacement of particle ° in 

8 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, 
Tables of Integral Transforms (McGraw-Hill Book Company, Inc., 
New York, 1954), Vol. 1. An expression for I[O,p] for the general 
nD lattice can also be found in this reference. 
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the case of the special initial conditions (lla) as well 
as the integral of the autocorrelation function. A general 
expression for I::.X is 

. (Q+1)pr[O,p] 
I::.X=hm . 

p-->O 1 +Qp2r[O,p] , 
(29) 

and in the 1D and 2D lattices I::.X has the values 
(Q+1) (4'Y)-1 and 0, respectively. It can thus be seen 
that in the 1D lattice, particle ° and its neighbors come 
to rest a distance I::.X from their initial positions whereas 
in the 2D lattice, particle ° behaves as if it were moving 
in a potential well with a minimum at its initial posi­
tion. 9 These different dynamical properties are un­
doubtedly related to the corresponding localizability 
properties of particles in such lattices discussed by 
Peierls,lO Wigner,ll and Montroll.l 

We will now obtain expressions for Xt[O,t] in the 1D 
and 2D lattices. The calculation of Xt[O,t] for the 3D 
lattice will be reported in a later publication. 

(a) ID Lattice 

In the case of the 1D lattice, the expression for 
Xt[O,t], which is obtained by substituting Eq. (26) in 
Eq. (23), is 

Q+ 1 f exp(2'Ylpt)dp 
Xt[O,t]=- , 

21ri L Qp+ (1 +p2)! 
(30) 

where p has been replaced by 2'Y!p, There are two values 
of Q for which the value of Xt[O,t] is readily obtained, 
namely Q=O and Q=1 (M=m and M=2m re-
spectively), ' 

Xt[O,t] = {fo(r), M=m, 
2r-lf 1(r), M=2m, 

where r=2'Y!t, and where fo(r) and fl(r) are Bessel 
functions of the first kind. The former result for the 
uniform lattice is a relatively old one. 3 ,12 Since, in this 
work, we are interested in these lattices as models for 
the study of Brownian motion, we will confine our 
attention to the case in which M>>m(Q>>1). 

The integrand in Eq. (30) has two branch points, at 
p=i and -i. A cut can be drawn between the branch 
points as shown in Fig. 1; then the path of integration, 
L can be deformed into a closed contour C as shown. It 
can readily be verified that the integrand has a simple 
pJle at po= - (Q2-1)-' (and when Q> 1, po is real). The 
contour C can be deformed so that Xt[O,t] in Eq. (30) 
can be expressed as the sum of two terms, the residue at 

9 Particle O,in an nD lattice (n;;: 3) behaves in a similar manner. 
10 R. E .. Pelerls, Ann. Inst. Henri Poincare 5,177 (1935). 
1: E. ~Igner, Lect~re Notes on Solid State Physics (Princeton 

Unrv~rslty Press, ~nnceton, New Jersey, 1948). 
12 Sir W. R. Hamll.ton, Proc. Roy. Irish Acad.l, 267, 341 (1839); 

T. H. Havelock, Phil. Mag. 19, 160 (1910); E. Schrodinger, Ann. 
Phys. 44,916 (1914). 
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FIG. 1. The cut is a semicircular arc of unit radius in the p plane. 

po= - (Q2-1)-1 and 0IX t(t) , the value of the line 
integral around C', 

Q+1 
Xt[O,t]=--exp[ -r(QL 1)-I] 

Q_Q-l 

+ Q+1 f epTdp . 

21ri C' Qp+ (1 + p2)! 
(31) 

It is shown in Appendix B that I OIXt(t) I ~ 21Q-I a 
bound which is independent of the time. Thus, in ~he 
limit Q»1 and for times t which are not too large, the 
autocorrelation function Xt[O,t] is 

Xt[O,tF-e-T/Q, (32) 

a result obtained b~ He~mer,6 and Rubin.4a The decay 
constant or relaxatIOn tune 

rR=Q/2'Y1 

is such that in the time rR, a wave front originating at 
particl~ ° and tr~veling ~ith the velocity of very long 
waves III the lattlce 'Y1 Will pass over a number of light 
particles whose total mass is M. Note further that the 
initial acceleration or initial slope of the autocorrelation 
curve plotted as a function of the time is not given 
accurately by Eq. (32). The exact value Xtt[O,O]=O 
results from a cancellation of the derivative of the term 
shown in Eq. (32) with the derivative of the negligible 
correction term, since they are both of order 1/Q. The 
form of Eq. (32) which is correct to the first order in 
1/Q can be shown to be 

Xt[O,t]"'e- T
/
Q 
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c 

L 

E 

FIG. 2. The curved portion of the cut in the p plane is a semicircular 
arc of unit radius. The poles at p± are outside the contour elf. 

(b) 2D Lattice 

In the case of the 2D lattice, the expression for 
Xt[O,t] is 

where it has been assumed that 1'1 = '}'2= l' to simplify 
the discussion. The integrand in Eq. (33) has loga­
rithmic singularities at p=O, ±i, and ±2!i. A cut can 
be drawn connecting these points, as shown in Fig. 2. 
As in the 1D case, the path of integration L can be 
deformed into a closed contour e as shown. It is shown 
in Appendix e ·that the integrand contains two poles, 
at P±=a exp[± i(tn-+ 0)] where a«l; and that as 
Q ~ ao, a and 0 are determined by the relations 

and 
Q"-"n/a2 In(8/a2) 

0"-'n/2 In (8/ a2). 

(34) 

Proceeding as in the ID case, the path of integration e 

TABLE I. 

Q a ±5 In (a2/8) Res (0) I+Dn(8/a2)J-l 

127 10-1.6 ±0.1863 -8.99 1.10S 1.111 
811 10--2·0 ±0.1483 -11.29 1.087 1.089 

SS90 10--2·5 ±0.1232 -13.S9 1.074 1.074 
40800 10-3 .0 ±0.10S3 -1S.89 1.063 1.063 

can be deformed into e" (see Fig. 2); and Xt[O,tJ can 
be expressed as a sum of terms, the sum of the residues 
at the two poles, p±=a exp[±i(!'n+o)J and the line 
integral around e", 

1- 2 In(8/ a2) 

1+-------------­
[In (8/ a2) J2+ (71"+ 20)2 

Details are given in Appendix C. For the range of Q of 
interest, 02Xt(t) contributes a relatively small, though 
not negligible, negative correction to the right-hand side 
of Eq. (35). In Table I, some pertinent values of the 
parameters are given. The column labeled Res (0) is the 
value of Res (t) at t=O. As can be seen, Res (0) 
overestimates the value of Xt[O,O], which is unity. The 
last column is an approximate value of Res(O) obtained 
by an expansion of Eq. (e17) in powers of [In(8/a2)J-l. 
As shown in Appendix e, the correction 02Xt(t) de­
creases in magnitude but is always negative. 

An approximate form for the autocorrelation function 
Xt[O,tJ when [In(8/a2)J-l<<1 is 

Xt[O,t]"-'cos(ar) exp[ -7I"ar/2In(8/a2)]' (36) 

The decay constant in the exponential is relatively large 
compared to the period of the cosine factor. For the set 
of parameters in Table I associated with Q=40 800, the 
value of Xt[O,t] when cosar= -1 is Xt[O,t] = -0.73. As 
an indication that the correction 02Xt (t) is significant in 
the limit of large Q, the integral of Xt[O,tJ in Eq. (35) 
with respect to the time is 

!::J.X"-' 0/ a. 

This value should be compared with the exact result, 
zero, obtained from Eq. (29). 
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APPENDIX A. VELOCITY DISTRIBUTION FUNCTION 

On replacing the 0 functions in Eq. (19) by their 
integral representations, the expression for P(v,t I vo,O) 
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can be written as 

P(v,t I vo,O) 

f OO f foo f foo ds foo dr { 
-00'" dXt(O) -00'" dx(O) -00 271'" -00 271'" exp is[v-M-1xt(OVMXt(t)-M-1x(OVVX(t)] 

+ir[vo- Xt(OV A ] __ l_[Xt(O)TMXt(O) +x(O) TVX(O)]} 
2kT 

00 f foo 00 dr { 1 00 ' . . dXt(O) -00'" f dx(O) 100 271'" exp ir[vo- Xt(O)T A] 

__ l_[Xt(O)TMXt(O)+X(O) TVX(O)] } 
2kT 

(Al) 

where, for convenience, the scalar Xt[O,O] has been replaced by the scalar product Xt(O) T. A. All components of A 
are zero, except the 0 component which is equal to unity. The integrations over Xt(O) and x(O) in Eq. (19) can be 
performed by using the following general relationl3 : 

f
OO f (271'")n/2 
... dz exp{itTz_tzTAz} =-- exp{ _ltTA-1t} 

-00 (IAI)i 2 , 
(A2) 

where A is a positive definite matrix of order n, I A I denotes the determinant of A, and A-I the inverse of A. The 
result is 

P(v,tlvo,O) 

f
OO ds foo dr { kT 

- - exp isv+irvo--[sM-IMXt(t)+rA]TM-I[sM-IMXt(t)+rA] 
-00 271'" -00 271'" 2 

kT } -2S2 M-2[VX(t) ]TV-I[VX(t)] 

(A3) 

f OO ds { kT 
-- exp isv--s2M-2[Xt(t)TMXt (t)+X(t)TVX(t)] 

-00 271'" 2 

-[vo+ikTsM-IATXt(t)]2/[2kTATM-IA] } 

------------------, (A4) 
exp{ -vo2/[2kTATM-IA]} 

where the existence of V-I in Eq. (A3) has been insured by the addition of the weak force constants k'. The following 
relations are used to simplify Eq. (A4): 

and 

ATM-IA=M-I 

ATXt(t) =Xt[O,t] 

t[Xt(t) TMXt(t) + X(t) TVX (t)] = M /2. 
The last relation is an expression for the total lattice energy corresponding to the initial conditions (lla). The 
final expression for P(v,t I vo,O) is 

fOO~ I kT } P(v,t I vo,O) = -- exp is(v-vOX t[O,t])_-S2M-I(1- X t2[O,t]) 
-00 271'" 2 

(AS) 

13 H. Cramer, MaJhematical Methods oj Statistics (Princeton University Press, Princeton, New Jersey, 1946), p. 119. 
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APPENDIX B. UPPER BOUND OF THE CONTOUR INTEGRAL AROUND C', O,X,(t) 

The contour integral around C' in Fig. 1 is equal to the difference of two integrals along the semicircular cut 

Q+ 1 f1</2 r 1 1] OlXt(t)=-- dO exp{iO+rei8} 
2?1" 3r/2 Qei9+(1+e2iB)! QeiL (1+e2i8)i 

Q+ 1 f3r/2 (1 +e2i9)i 
=-- dO exp{iO+rei8 } • 

?I" 12 (Q2-1)eZi8 -1 
(Bl) 

An upper bound on the integral (B1) is 

Q+1j37r/2 . I (1+e2i8)ilmax 
IlhXt(t)! :::; -- dO exp{ T cosO} , 

?I" "/2 I (Q2-1)e2i8-l! min 

(B2) 

where the pairs of vertical bars with the subscripts max 
and min denote, respectively, the maximum and mini­
mum absolute magnitude. On inserting the values of 
the maximum and minimum magnitudes in Eq. (B2), 
and noting that the maximum value of exp(T cosO) is 
unity in the interval of integration, an upper bound of 

I (hXt(t) ' is 

Q+ 1 f 37r/2 2t 
IOlXt(t)!:::;- dO--

?I" .. /2 Q2-2 

:::; 21Q-1, for Q»1. 

APPENDIX C. SOME DETAILS OF THE EVALUATION 
OF THE AUTOCORRELATION FUNCTION 

IN THE 2D LATTICE 

1. Roots of Qg+g-l(g2+ 1)/2F1[!,!; 1; (g2+ 1)-2J = 0 
for Q» 1 eel) 

In the neighborhood of p=O, the hypergeometric 
function 2Fl[!,!; 1; (tf+1)-2J can be written as14 

~l[t,t; 1; (p2+1)-2] 

1 (p2+1)2 [11.. p2(p2+ 2)] 
In 2Fl il>2, 1, ---

?I" p2(p2+2) (p2+1)2 

2 '" mn(!)n[p2(p2+2)]" +- 1: (IY(n+l)-I/I(n+t)} ---
?I" n=0 (1)n(1)n (p2+1)2 

1 2 
::=- In(!p2)+-{I/I(1)-I/I(t)}+ .. " ! p!«l, (C2) 

1r 1r 

where I/I(z) denoted the function I/I(z)=dlnr(z)/dz. On 
using the relation15 

1/1(1) -I/Im = 2ln2, 

14 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, 
Higher Transcendental Functions (McGraw-Hill Book Company, 
Inc., New York, 1953), Vol. 1, p. 110. 

15 W. Magnus and F. Oberhettinger, Special Functions of 
Mathematical Physics (Chelsea Publishing Company, New York, 
1949), p. 3. 

the approximate expression for 2F£!,!; l; (p2+ 1)-2J 
for I pi «1 is 

2Fl[!,!; 1; (p2+1)-2]::=1r-Qn(8/p2). (C3) 

It can readily be verified that for Q»1, the only possible 
roots of Eq. (Cl) are located near p=O, where Eq. (Cl) 
can be replaced by the simpler equation 

(C4) 

On replacing p by a exp[i(!1r+o)J, the pair of equa­
tions for the real and imaginary parts of Eq. (C4) is 

Qa2 cos(1r+21l) 
-1r In(8/ a2) 

(CS) 
[In(8/ a2)J2+ (1r+20)2 

Qa2 sin(1r+2o) 
1r(1r+21l) 

(C6) 
[In(8/a2)J2+ (1r+21l)2 

Some solutions of Eqs. (CS) and (C6) are listed in 
Table I. This table was constructed with the aid of the 
relation, 

tan21l/ (1r+21l) = [In (8/ a2)]-\ (C7) 

obtained by dividing Eq. (C6) by (CS). Starting with a 
value of a, Il was determined from Eq. (C7); and then 
the associated value of Q was determined from Eq. (CS). 
For a given value of a, there are two values of (1r/2)+1l 
which only differ in sign. In the limit of very large 
Q (a«1), where In (8/a2)>>1, an approximate set of 
equations can be obtained from (C7) and (CS), namely, 

Qa2'""1r[In (8/ a2) J-l 

1l"'!?I"[ln(8/ a2) J-l. 

2. Sum of the Residues of the 
Integrand in Eq. (33) 

(C8) 

(C9) 

The sum of the residues of the integrand in Eq. (33) 
is calculated in a straightforward manner using the 
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relationl6 

(
F(Z») 1 f F(z) 

Res G(z) = 27ri G(z)dz 

F(zi) 
=I:-, 

i G' (Zi) 

where F(z) and G(z) are analytic inside the con­
tour of integration, but G(z) has simple zeros at the 

points, Zi. As shown in the foregoing, the denominator 
in the integrand of Eq. (33) has simple zeros at 
p±=a exp[±i(7r/2+o)]. Near p=O, the denominator 
D(p) can be approximated by the expression 

D(p) = QP+7r[p In(8/ p2)]-L 
and 

D' (p±) = 2Q{ 1-[In (8/ p±2) J-l}. 

After some tedious algebra, the expression for the sum 
of the residues of the integrand in Eq. (33) reduces to 

(ClO) 

3. Contour Integral around e", ~hXt(t) 
The contour integral around e" in Fig. 2 can be expressed as the sum of two parts: (1) the difference of line 

integrals on either side of the cut ABGDE, and (2) the difference of line integrals on either side of the portion of 
the cut OG, 

where .iE .... A dp denotes the line integral from E to A along the cut EDGBA and S-R[O,p] and S-L[O,p] denote, respec­
tively, the values of S-[O,p] on the right and left sides of the cut EDGBA. Similarly, ./G .... o dp denotes the line integral 
from G to ° along the cut GO, and S-D[O,p] and S-u[O,p] denote, respectively, the values of S-[O,p] on the lower and 
upper sides of the cut GO. By arguments similar to those used in Appendix B for the 1D case, the contribution of 
the first line integral in Eq. (Cll) can ~e shown to be bounded by a quantity of order l/Q. Upon omitting this 
term and using Eq. (C2) for the analytic continuation of S-D[O,P] and S-u[O,p], the second line integral can be 
rewritten as 

(C12) 

The explicit form of s-[O,xe±i"] is 
s-[O,xe±i"J= R(x) ±iI(x) , (C13) 

and 

(C1S) 

16 L. A. Pipes, Applied Mathematicsfor Engineers and Physicists (McGraw-Hill Book Company, Inc., New York, 1946), p. 464. 
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On using the quantities R(x) and lex), and replacing x by -y, the final form for 62X t (t) is 

Since the integrand in Eq. (C16) is positive, 62X t (t) 
constitutes a negative correction to the contribution of 
the residues to the autocorrelation function. The func­
tion 02X t(t) decreases with the time because of the 
presence of the factor, exp[ -ry]' The value of 6~t(t) 
at t=O can be determined indirectly from the relation 

Xt[O,O] = 1 

=Res(t=0)+62X t (0). 

With Res(t=O) determined from Eq. (ClO), the value 
of 62X t (0) is 

(C16) 

eC17) 

In the limit of very large Q, In(8/a2) is large compared 
to 7r (see Table I for typical values) and a simple 
approximate expression for I 62X t(0) I, the maximum 
value of the magnitude of the negative quantity 
62X t (t), is 
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1. INTRODUCTION 

QUANTUM mechanics has undoubtedly its most 
beautiful general form in the language of abstract 

vector space theory, whose mathematical methods fur­
nish it at the same time with one of its most powerful 
tools. There are nevertheless many fundamental prob­
lems which are attacked with advantage in a special 
representation. It has become clear lately that in non­
relativistic quantum mechanics as well as in relativistic 
field theory much can be gained by returning from the 
formal operator calculus to that of point functions. The 
theory of functions of complex variables, specifically, 
has become again a prominent tool of physics. 

The recent upsurge of dispersion relation research is 
a case in point. Although its results can frequently be 
obtained without ever going into the complex plane, 
the most appropriate general mathematical tool is the 
theory of analytic functions. 

Most physicists are quite conversant with the theory 
of differential and integral equations; most know also 
the essentials in the theory of functions. The combina­
tion of these two disciplines, however, is much less 
familiar to many. A useful purpose may therefore be 
served by reviewing what is known by means of com­
plex analysis in a certain area of scattering theory. 

I shall restrict myself to the nonrelativistic quantum 
mechanics of two-particle systems, that is, the one­
particle Schrodinger equation in the center of mass 
system. The properties of the solutions of such a partial 

differential equation not being nearly as well under­
stood as those of solutions of ordinary differential equa­
tions, a partial wave analysis is made which leads to 
single or coupled radial equations. The regular and 
irregular solutions of these as well as all the functions 
constructed from them for the purpose of scattering 
theory are to be investigated. . . 

I shall restrict myself to local potentials. Certam 
types of nonlocality, such as spin-orbit forces introduce 
no changes whatever. Others may introduce only in­
essential complications. In the latter case references to 
appropriate papers will be given. The general case of 
nonlocal forces, however, is far more difficult and little 
is known about it. 

The purpose of this article is not only to collect re­
suIts; it is also didactic. The proofs therefore form an 
essential part of its methodological aim. How many 
physicists have actually seen a completeness proof, ex-
cept for some very special functions? . . 

Very little in this paper is new. Almost everythmg m 
it can be found in the published literature, directly or 
by implication. In contrast to some a?-thors on t?e sub­
ject I shall not make a weak assumptlon concernmg the 
potential and then stick to it. From time to time the 
assumptions will be explicitly strengthened in order ~o 
see what can be said then. The weakest hypotheSIS, 
always to be kept, is that the first and second absolute 
moments of the potential are finite; stronger ones to 
be made at various points are that the potential has an 
exponential tail or that it vanishes identically beyo~d 
a certain point. Since the earlier papers by Jost, Levm­
son, and others had a special purpose their authors 
were not interested in doing that explicitly, although 
some of the general consequences of a finite range follow 
immediately from their work and were knmvn to them. 
How much more can be said if the potential vanishes 
beyond a point has been demonstrated particularly by 
the work of Humblet and Regge. 

2. PRELIMINARIES ON SCATTERING THEORY 

We start from the Schrodinger equation for two par­
ticles in the center of mass coordinate system: 

[ - (tt2/2p.)V2+H1 (r)]1/;(r)=E1/;(r), (2.1) 

* Supported in part by the National Science Foundation. p. being the reduced mass of the particles and r, their 
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relative distance. The interaction energy HI(r) is 
assumed to be invariant under rotations but may be 
spin dependent. 

For the purpose of scattering theory it is advantage­
ous to convert (2.1) into an integral equation which 
incorporates the boundary condition that at large dis­
tances the wave function should consist of a plane wave 
plus an outgoing spherical wave; thus, with E=ii2k2/2p" 

lP+(ksv,r) =lPo(ksv,r) 

where 
lPo(ksv,r) = [(p,k)i/ii(21r)!JXs'e ik •r, 

X being the relevant normalized spin wave function for 
the intrinsic angular momentum of the two particles. 
The normalization of 1/;0 is such that 

f (dr)l/;o*(ksv,r)l/;o(k' s'v',r) = o(E- E')o(~h-nk')08"0 .. " 

L ioodEfdn~o*(ksv,r)l/;o(ksv,r') =o(r- r'); 
$V Q 

nk is the solid angle defined by k. 
The specification of outgoing spherical waves is ac­

complished by the choice of Green's function: 

f i
oo I/;o*(k' sv,r)l/;o(k' sv,r') 

G+(k; r,r')=L dnk' dE-------
•• Q E-E'+iE 

p, exp(ik I r- r'l) 
21rii2 I r- r' I 

e
ikr

(21rP,)t '" -- - L x."lPo*(k"sv,r'), 
r-+oo r kh2 .. 

(2.3) 

where k"=krr-1• 

We expand the Green's function and wave functions 
in spherical harmonics: 

G+(k; r,r') = (2p,/h2) L 'YJl.M(r)'YJl.M*(r') 
JM1. 

Xr1r'-lGI(k; r,r'), (2.4) 

Gz(k; r,r') = (- ) l+Ik-lUI (krdwl (kr» , 

I/;o(ksv,r)= (2p,k/7rh2)t(kr)-1 L i1ul(kr) (2.5) 
JMlm 

X 'YJl.Jlf(r) Yr*(k)C1.(J,M; m,v) 

lP(ksv,r) = (2p,k/1rh2)t(kr)-1 L i1if;1'a',l/ (k,r) 
JMU'ms' 

X 'YJl,.,M(r)Yr*(k)CI.(J,M; m,v), (2.6) 

where Cz.(J,M; m,v) are the Clebsch-Gordan coeffi-

cients in the notation of Blatt and Weisskopf, l and 

'YJl.M(r)=L C1.(J,M; m,v)Yr(r)Xs'. 

Furthermore, we have used the Riccatti-Bessel functions 

UI(Z)=Zjl(Z) = (!1rz)tJ l+i(Z) = (- )1+lUl( -z) 

VI(Z)=znl(Z) = (!?rz)W l+i(Z) = (- )IVl( -z) 

Wl(Z) = -vl(z)-iul(Z) = -izhl(2)(Z) 

= -i(!1rz)lHI+i (2)(Z) = (- )IWI( -z)*, 

(2.7) 

which are most convenient for solving the radial equa­
tion. Insertion in (2.2) leads to a set of coupled integral 
equations for the radial functions: 

X VI'" ,1".J (r')I/;I"'" ,1/ (k,r'), (2.8) 
where 

V/s,I,.J(r) = ~f dn'YJl.M*(r)Hr(r)'YJl,.,M(r). (2.9) 

The meaning of the subscripts on I/; follows from (2.6) 
and (2.8). The first set "l's'" indicates the component 
of I/; belonging to specific orbital and spin angular 
momenta, while the second set, "Is" refers to the angular 
momenta of the incident beam, i.e., to the boundary 
condition. 

The solution of (2.8) satisfies the set of differential 
equations 

d2 

---1/!l'8',lsJ+ L VlfS'.lI1S"JiftZlls"llsJ 
dr2 I"." 

If we are considering the scattering of particles with 
no spin then V and I/; are diagonal and equations (2.8) 
and (2.10) become uncoupled. If HI is invariant under 
space reflection then the conservation of parity implies 
that for the scattering of a spin ! particle by a spin­
zero particle, the equations are also uncoupled. In case 
both particles have spin! it is the tensor force alone 
which couples them. 

The amplitude 6.,., .•• (k',k) for scattering from the 
initial momentum hk and spin hs, ltv to the final mo­
mentum hk' and spin hs', iiv' is defined by the asymp­
totic form of I/; for large r; thus 

¥t+(ksv,r)'" [(p,k)t/M21r )IJ 

X[X.'eik.r+rleikr L x.,·'6"", .. (k',k)J, (2.11) 
SIp' 

where k'=krr-1• Taking the limit of (2.2) for large r 

1 J. M. Blatt and V. Weisskopf, Theoretical Nuclear Physics 
Gohn Wiley & Sons, Inc., New York, 1952). 
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leads by (2.3) to 

(211")2

f e.,., , .. (k',k) = --k- (dr)~o*(k' s' v',r) 

XHI(r)~+(ksv,r). (2.12) 

If we expand in spherical harmonies according to (2.5) 
and (2.6), we obtain 

e"", .. (k',k) 

4n-
= -- L il-l'YI,m' (k')CI ,., (J,M; m',v') 

k2 JMll'mm' 

X Yr*(k)CI.(J,M; m,v)It;"i"'drUI,(kr) 

X VI's' ,l".,,J (r)~1"8" ,1/ (k,r). (2.13) 

The scattering matrix is defined as the probability 
amplitude for finding, at the time t= + 00, momentum 
ftk' and spins fts', ftv', if they were ftk and fts, ftv at the 
time t= - 00 .2,3 

(k's'v'ISI ksv) 

= lim r (dr)~o*(k' s'v',r)ei(E'-E)t/h~+(ksv,r) 
t~CIJ& 

= 0 (E- E')[o(~h-~h')o •• ,o .. + (ik/211" )e.,., ,8.(k',k)] 

=o(E-E') L yl,m' (k') Yr*(k)il-l' 
JMU'mm' 

X C1,., (J,M ; m',v')CIs(J,M; m,v)SI'" ,1/ (k), (2.14) 

where the second line follows from the integral equation 
(2.2) and (2.3). It follows from (2.12) that 

e."',8.(k',k)= -211"ik-1 L yl,m'(k')Yr*(k) 
JMll'mm' 

XCI,.,(J,M; m',v')Cls(J,M; m,v)il-l' 

X (SI'" ,1/ -Oll'O •• ,). (2.15) 

Conservation of particles implies that S is unitary. 
It therefore follows from (2.15) that 

- 211"ik-les '" ,8.(k',k) - e .. ,8,.,*(k,k')] 

= L fdrl./'e8".", .. (kfl,k)e.".",.,.,*(kff,k')' (2.16) 
s"v" 

A special case is the "optical theorem," which is ob­
tained by setting s=s', v=v', k=k'4: 

=u .. total(k). (2.16') 

2 J. Jauch and F. Rohrlich, Theory of Photons and Electrons 
(Addison-Wesley Publishing Company, Inc., Reading, Massa­
chusetts, 1955). 

3 C. M¢ller, Kg!. Danske Videnskab. Selskab, Mat.-fys. Medd. 
23, No.1 (1945). 

4 We write Re A and 1m A for the real and imaginary parts of A. 

A further property of the S matrix follows if HI is 
invariant under time reversal. We use a time-reversal 
operatorS if and spin functions and spherical harmonics 
such that 

ifeyJI.M (r) = (- )J+Meyn.-M(r). 

This is obtained by taking real X and spherical har­
monics which are such that6 

Yr*= (- )1+mYI-m, 

and the time-reversal operator 

if= (iulI(1» (wlI(2»K, 

u(1) and U(2) being the spin matrices for particles # 1 
and # 2 (with iull= 1 if the particle has spin zero) and 
K, the antiunitary complex conjugation operator. The 
Clebsch-Gordan coefficients are such that 

CI.(J, -M; -m, -v)= (- )I+·-JCI.(J,M; m,v). 

With these conventions we have 

~o(ksv,r) = (- )S+'~o( - ks- V; r), 

and therefore, by (2.2), 

~+(ksv,r) = (- )S+.~_( - ks- V, r), 

where ~_ satisfies the integral equation (2.2) with 
G_=G+ *, the incoming wave Green's function. 

It then follows from 

and the assumed time-reversal invariance of HI that 
the potential matrix of (2.9) is symmetric: 

(2.17) 

Since HI is Hermitian, VI.,I'.,! is consequently real. 
For the scattering amplitude, we get, from (2.12), 

e.,., , •• (k',k) = (- )8--8'+>-·'e._.,.,_" (- k, - k'), (2.18) 

which is the reciprocity theorem. It follows from (2.15) 
that it is equivalent to the symmetry of SI8,1"'! as de­
fined in (2,14): 

(2,19) 

SJ being unitary and symmetric, it can be diagonalized 
by an orthogonal real matrix U: 

SI.,I,.,!=La UIB,aJ exp(2ioaJ)Ua,I,.,J, (2,20) 

where the 0,/ are real. 
Comparison of (2.13) with (2.15) gives us another 

expression for the S matrix: 

SI"',I/(k)=OIl'088,-2ik-1 L f"'drUI,(kr) 
l" 8" 0 

X VI'" ,1"."J (r)~I"'" ,I.J (k,r). (2.21) 
Ii E. P. Wigner, Gro'up Theory (Academic Press, Inc., New York, 

1959), p. 325 II. 
6 Those of Blatt and Weisskopf,1 say, multiplied by i/j see 

footnote 5, p. 345, of E. p, Wigner.& 
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We may now identify SJ by the asymptotic form of 
the radial wave function. In order to do that we require 
the asymptotic values of the Riccatti-Bessel functions 
for large r: 

Uz (kr) "-'sin (kr-j1rl), 

vz(kr)'" - cos (kr-j1rl), 

Wz (kr) ,,-,iZe-ikr. 

(2.22) 

Equation (2.8) together with (2.4) and (2.21) shows 
that as r ~ 00, 

1/;1s.l's,J (k,r) 

",jil+l[oll'o8s,e-ikr- (- )leikrSls.I,.,J(k)], (2.23) 

and therefore, by (2.20), 

1/;z •. ,/ (k,r):: L 1/;18.1'8,J (k,r)UI,s' .aJ (k) 
l'a' 

Thus OaJ (k) is identified as the eigenphaseshift. The 
characteristic property of 1/;1 •. a J is that all its com­
ponents experience the same phaseshift. 

We want to investigate the properties of solutions 
of the radial equation (2.10). In Sees. 3 to 8 we restrict 
ourselves to the case of no coupling, which is realized 
when one of the particles has spin zero and the other, 
spin less than two (provided HI conserves parity); or 
else if both have spin t, but tensor forces are neglected. 

If there is no coupling; i.e., the matrix V J is diagonal, 
then only one subscript, l, will be used everywhere, 
that being the only index on which Eq. (2.10) explicitly 
depends via the centrifugal term. 

3. REGULAR AND IRREGULAR SOLUTIONS 

We return to the radial equation (2.10) in the case 
of no coupling. Rather than considering the "physical" 
solution 1/;/ we define regular and irregular solutions by 
boundary conditions which lead to simple properties 
as functions of k. 

The weakest assumptions we shall ever make con­
cerning the potential are the existence of its first and 
second absolute moments: 

i~drrl VCr) 1< 00, 

f~drr21 VCr) 1< 00. 

o 

(3.1a) 

(3.1b) 

Whenever stronger assumptions are made they will be 
stated explicitly. 

Hypothesis (3.1a) implies that V behaves better than 
,-2 near the origin. There exists consequently a regular 
solution !pz(k,r) of (2.10) which near r=O behaves like 

ul(kr). As kr ~ 0 we have7 

uMr) = (kr)I+lj (2l+ 1) ! !+O[ (kr) 1+3], 

vl(kr)= - (kr)-1(2l-1)! !+O[(kr)-Z+2]. 
(3.2) 

We therefore define !pz(k,r) by the boundary condition 

lim(21+ 1)! !r-l-l!pz(k,r) = 1. (3.3) 
r-->O 

It then follows immediately that !Pl(k,r) is a function 
of k2 only and that for real k it is real. 

Hypothesis (3.1b) implies that at infinity V behaves 
better than r-3 so that a Coulomb field, for example, is 
excluded. It follows (as will be shown later) that at 
infinity all solutions of (2.10) oscillate like sine or 
cosine waves. It is then convenient to define another 
solution fz(k,r) by the boundary condition 

limeikrfl(k,r) = il, (3.4) 
~oc 

This function does not vanish at r=O, in general, but 
it is O(r-I) there, as is u'l(kr). It follows immediately 
from the boundary condition (3.4) and from the reality 
of the differential equation (2.10) that for real k 

fz*( - k, r) = (- )Ifl(k,r). (3.5) 

We now want to extend all our definitions to complex 
values of k. It then follows from the k independence of 
the boundary conditionS .(3.3) that for fixed r, !pz(k,r) 
is an analytic function of k regular for all finite values 
of k; i.e., an entire function of k. The function fl(k,r) 
is for fixed r>O an analytic function of k regular in the 
open lower half of the complex k plane; in the upper half 
of the k plane it may be expected to have singularities 
since (3.4) is not sufficient there to define fz(k,r) 
uniquely. These statements are intended merely as a 
guide and will be proved later. 

It is clear that in any region of analyticity connected 
with the real axis Eq. (3.5) implies 

h*( -k*, r)= (- )Zjz(k,r). (3.5') 

We can readily replace the differential equation 
(2.10) and boundary conditions (3.3) or (3.4) by 
integral equations. If we define 

gz(k; r,r') 
:: k-1[ul (kr')vz (kr) - Uz (kr)vl (kr') ] 
=i( - )1(2k)-1[wz(kr)wz( -kr')-wl( -kr)wl(kr')], 

(3.6) 

7 We use the following notation: "J(x)=O(x) as x -> 00 (or 0)" 
means that J(x)/x is bounded as x-> 00 (or 0); "J(x)=o(x) as 
x-> ~ (orO)"meansthatf(x)/x~ends,tonaugh~asx-> 00 (?rO). 

8 According to a theore!ll by Pom.c~re the Solut.lOn of an .ordmary 
linear differential equation contammg an entire function of a 
parameter k, defined by a boundary condition independent of k, 
is itself an entire function of k. See footnote reference 9; also see 
footnote 8 of Jost and Pais.to We shall use this theorem as a guid­
ance only and prove it for the special case of <PI(k,r). 

9 E. Hilb, Encycl. der Math. Wissensch. (B. G. Teubner, 
Leipzig, 1915), Vo!' 2, Part 2, p. 501. 

10 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951). 
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then 

G,(l)(k; r,r') = '" -, {g
l(k' r r') r'<r 

0, r'~r, 

is a Green's function [compare with (2.4)J and so is 

{ 
0, 

G/2) (k; r,r') = 
- g,(k; r,r'), 

r'5,r, 

r'~r. 

The first is appropriate to the definition of <PI and the 
second, to that of f,; thus 

<PI (k,r) = k-Hul(kr) 

+ irdr'g,(k; r,r') V(r') <P1(k,r'), (3.7) 

f,(k,r) =wI(kr)- f'" dr' g,(k; r,r') V(r')fl(k,r'). (3.8) 
r 

The existence and analytic properties of <PI and fl 
are proved by means of these integral equations. Their 
advantage over the integral equation (2.8) for the 
physical wave function 1/11 is that they can be solved by 
successive approximations, provided only that V satis­
fies (3.1), irrespective of its strength. The reason is that 
the integrations run from naught to r only, or from, 
to infinity. 

In order to prove the convergencell of the sequence of 
successive approximations, one uses the following 
bounds, true in the entire complex plane16 

I uI(kr) I5,Cel plr[L(I k I r)Jl+\ 

I V, (kr) I5,Ce lpl r[L( I k I r)]-l, (3.9) 

IWI(kr) 15,Ce>r[L( I k I r)]-l, 

where v:=:Imk and 

L(x):=:x/(I+x). 

It is then easily seen that for r'5, r 

I gl(k; r,r') I = I gl(k; r',r) I 
5,Cel pi (r-r') I k l-l[L( I k I r)]!+l[L( I k I r')J-I. (3.10) 

We now solve (3.7) by successive approximation: 

00 

<PI (k,r) = L: <Pl(n) (k,r), 
o 

11 The procedure below follows Jostl2 and Levinson.l3 It can be 
generalized to certain restricted nonlocal potentials; see Martin.14. 15 

12 R. Jost, Helv. Phys. Acta 20, 256 (1947). 
13 N. Levinson, Kg!. Danske Videnskab. Selskab., Mat.-fys. 

Medd. 25, No.9 (1949). 
14 A. Martin, Compt. rend. 243, 22 (1956). 
15 A. Martin, Nuovo cimento 14, 403 (1959). 
16 The first inequality was given by Levinson,l3 the others by 

Newton.n 
17 R. G. Newton, Phys. Rev. 100, 412 (1955). 

where 

<PI(O)(k,r) = k-Hu,(kr) 

<Pl(n)(k,r) = ~rdr'g'(k; r,r')V(r')<PI(n-O(k,r'), n~ 1. 

If we use (3.10), we get 

I <PI(n) (k,r) 15,C ~rdr'elPI (r-r') I k I-{L( I k I r)JI+l 

x[L(lklr')]-11 V(r') I I <P1(n-l)(k,r') I. 

Now writing for the moment, 

<tl(n) (k,r) = <P1(n) (k,r)c-Iplrl k II+l[L( I k I r)J-H, 
we have 

I <t,ro) (k,r) I5,C 

I <t,(n) (k,r) I5,C ir 
dr'l <tl(n-l) (k,r') I 

XIV(r')IL(lklr')lkl-l, n~l, 
and therefore 

rl rn 
X "'IV(r,,)I--

1+ Iklr1 1+ I klrn 

cn+1[fr r' ]n 
=- dr'IV(r')1 , 

n! 0 1+ Iklr' 
so that 

I ~ <t/n ) (k,r) I5,C exp[ C irdr'l Ve,') I r'(l + I k I r')-l]. 

As a result the series L: <Pl(n) converges absolutely and 
uniformly for all r and in every finite region in the 
complex k plane. Furthermore, we find that 

I <Pl(k,r) 15,Celplr 
( 

r )1+1 

1+lklr 

Xexp C f dr'l V(r') I . 
[ 

r r' ] 

Jo l+lklr' 
(3.11) 

Since gl and <PI(O) are entire analytic functions of k, so 
is each <PI (71) • It then follows that for every fixed r, 
<Pl(k,r) is an entire function of k2

• 

We may now insert (3.11) in the integral equation 
(3.7) and obtain the inequality 

I <PlCk,r)-k-Hul(kr) I 

5,CeIPlr( r )1+1 (dr'l VCr') I r' . 
1+lklr Jo l+lklr' 

(3.12) 
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The integral on the right-hand side tends to naught as 
I k I ~ 00, even if at r=O only the first moment of I VI 
exists. That is seen by writing 

["'drIV(r)1 r r+fOO~iadrrIV(r)1 
o l+lklr Jo a ° 

+ fOOdrIV(r)llkl-l • 

a 

Hence if we choose a and k so that 

I kJ ~ foodrl VCr) 1·2e-1 

a 

then 

The right-hand side of (3.12) is therefore 

o(lkl-l-leip1r) as Jkl ~ 00, 

and consequently, as I k I ~ 00 

fi'z(k,r) = k- I- 1 sin(kr-t1l'l)+o(1 kl-I- 1e1vlr) (3.13) 

uniformly in r. It is clear from (3.12) that if V is abso­
lutely integrable, then the remainder is O(lkl-l-2etvir). 

A similar procedure is followed for the function 
fl(k,r) = 'LNn) (k,r), where 

N°) (k,r)=wz(kr) 

Nn)(k,r) = - f""dr'gl(k; r,r')V(r')Nn-l) (k,r'), n~ 1. 
r 

One then finds that the series 'Lhl(n) (k,r), where 

h/(n) (k,r) = e-vr[L( I k I r)JlNn) (k,r), 

is dominated by a series which can be summed to 

C exp[ C fOOdr' I VCr') i 

Xexp[(v+ \ ,,1\ )(r' -r)Jr'(1+ \ k! r')-1 J 
The series 'Lfz(n) therefore converges uniformly for all 
r~ro>O and for any closed region in the complex k 
plane not including k=O, where 

is finite. Thus fl(k,r) exists, is continuous, and is ob­
tainable by successive approximations from (3.8) for 
all ,->0 and all finite k=l=O in the lower half-plane, in­
cluding the real axis, provided only that V possesses a 
finite first absolute moment. If, moreover, V decreases 

exponentially at infinity so that 

(3.14) 

for some a>O, then it follows that h(k,r) exists and is 
continuous (and is obtainable by successive approxi­
mations) in a strip in the upper half of the complex k 
plane with Imk~a, except at k=O. 

We also get the inequality 

I Jz(k,r) I ~Cevr[(1+ \ k i r)/ I kj r J1eCa, (3.15) 

which inserted in (3.8) yields 

f
'" r' 

XeCa dr' I VCr') I e(v+1 vl)(r'-r) . (3.16) 
r l+lk!r' 

By the same argument that follows (3.12) the right­
hand side of (3.16) is oCe") as I k I ~ 00 uniformly for 
all r;;:::ro>O in the lower half of the complex k plane 
including the real axis, and in a strip of width a in the 
upper half-plane if (3.14) holds. Therefore, as lkl ~ 00 

JzCk,r) = ile-ikr+o(evr). (3.17) 

The inequality (3.16) also shows that 

limk1fl(k,r) 
k->O 

exists for all finite r>O if the limit is carried out in the 
region of regularity. 

In order to show that fl(k,r) is an analytic function 
of k we must show the existence and continuity of its 
first derivative with respect to k in the same manner as 
those of Jz(k,r) itself. (Since the integral in (3.8) con­
verges absolutely, differentiation under the integral 
sign is permitted.) We cannot use the same argument 
here as for fi'z(k,r) because fl(n) is not necessarily 
regular. The result is that, provided V has a finite 
second absolute moment, h(k,r) for fixed r>O is an 
analytic function of k regular everywhere in the open 
lower half of the complex plane and continuous on the 
real axis, except at k=O. If the potential satisfies (3.14) 
then the region of regularity includes a strip in the 
upper half-plane up to Imk<a, except for a pole of 
order l at k=O. If the potential vanishes identically 
outside a finite region, then k1h(k,r) is an entire func­
tion of k for all fixed r> O. 

If the potential satisfies (3.14) then one may obtain 
information about the singularities of fl(k,r) for Imk~a 
in a relatively simple ~ay.18 If we write 

fl(k,r) == N°) (k,r)+X,(l) (k,r), 

where N°) (k,r) =w,(kr), then Xz(l) satisfies the integral 

IS T. Regge, Nuovo Cimento 9, 295 (1958). 
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equation 

XZ(l) (k,r) = N1)(k,r)- foo ar'gz(k; r,r')V(r')Xz(l)(k,r'), 
r 

where fz(l) is simply the first Born approximation: 

N1)(k,r) = - fOOar'gl(k; r,r')V(r')wzCkr'). 
r 

Suppose that for a given V this integral is carried out 
and it admits an analytic continuation into a region in 
the upper half-plane with Imk:2: a, and we can set there 

IN1) (k,r) I--:::;Ce'Y r• 

We may then use this inequality in place of (3.9) and 
prove the analyticity of XI (l) by the same arguments 
which prove it for fl. The result is evidently that 
xz(l) (k,r) is regular where fz(l) (k,r) is in the region 
Imk<2a-,),. If, for example, ,),=v-2a as it is for 
Imk<a, then the continuation works for Imk= v<2a. 
One may repeat the same argument by examining ex­
plicitly the analytic continuation of the second Born 
approximation fl(2), and thus extend the strip of analy­
ticity further and further, except for explicitly isolated 
singularities. 

4. JOST FUNCTION II(k) 

The functions fz(k,r) and fl(-k, r) are two linearly 
independent solutions (for k=l=O) of the differential 
equation (2.10). The regular solution <PI(k,r) can there­
fore be expressed as a linear combination of them. Since 
'PI(k,r) is even in k this defines a function fl(k), so that12 

'PI (k,r) = !ik-I- 1 

X[jl( -k)fl(k,r)- (- ) lfz (k)fl ( -k, r)]. (4.1) 

We want to get a more explicit equation for fl(k). That 
can be obtained by taking the Wronskian of <pz(k,r) 
and fl(k,r). The Wronskian of two solutions of the same 
linear second-order differential equation being inde­
pendent of r, we readily find, by evaluating it at r ~ 00 

and using the boundary condition (3.4) that 

W[jl(k,r), fl( -k, r)]= (- )12ik, 
where 

W[j,g]=fg'- f'g· (4.2) 

If we make use of this and (4.1), we obtain 

fz(k) = kIW[jl(k,r),<pz(k,r)]. (4.3) 

Because of the boundary condition (3.3) this implies 
that 

fz(k) = lim (kr)zfz(k,r)/ (21-1)!!. (4.3') 
r->O 

If we insert the integral equations (3.7) and (3.8) in 
(4.3) and evaluate it at r= 0 or r= 00, we obtain the 
following two integral representations for /I(k): 

fz(k) = 1 +k-l~ooarfl(k,r) V(r)uz(kr) 

= 1 +kz looar'Pz(kr) V(r)wz(kr). (4.4) 
o 

We may now express the S matrix in terms of fl(k). 
The asymptotic form for large r of <pz(k,r) follows im­
mediately from (4.1) and the boundary condition (3.4); 
thus 

'Pz(k,r ) ,,-,!il+1k-z- 1 

X[jz( -k)e-ikr - (- )Zfz(k)eikr]. (4.1') 

Comparison with (2.23) shows that 

Sz(k)= fz(k)/fz( -k). (4.5) 
It follows that 

SI( -k)= l/SI(k). (4.6) 

Furthermore, <PI being real and even in k it follows from 
(3.5) and (4.3) that for real k 

/I*(-k)=fl(k), (4.7) 

and, consequently, 
ISz(k)I=1. 

This is the unitarity condition. 
The relation between 'Pz and the physical wave func­

tion 1/;1 is provided by a comparison of (4.1') with 
(2023) ; thus 

1/;z(k,r) = [k1+1
/ fl( - k)]'PI(k,r). (408) 

This furnishes the physical significance of the function 
fl(k). Equation (4.5) together with (4.7) and (2.20) 
shows that 

fl(k)= Ifz(k) 1 exp[iOzek)], (409) 

where oz is the phaseshift for the lth partial wave, while 
(4.8) with (3.3) shows that 

l1/;z(k,r) 12 ~ 1 "fl(O) (k,r) 1
2/lfl(k) 1

2, 
r->O 

1/;z(O) being the wave function in the absence of a po­
tential. Thus the phase of fl(k) is the lth phaseshift 
and the inverse of the square of its modulus measures 
the probability of finding the particles in each other's 
proximity relative to what it would be in the absence 
of forces between them. 

The Jost functionfl(k) may also be approached from 
quite a different point of view. Suppose that one were 
to solve the integral equation (2.8) for the physical 
wave function by the Fredholm method. lOo19 One would 
then have to form the Fredholm determinant 

00 (- )nfoo i oo 
Al(k)=l+I: -- ar1·· 0 arn 

n~l n! 0 0 

where 
G1(k; r1,r1) Gz(k; r1,1"2)··· 

D1(k; rl,·· ·,rn)= G1(k; r2,r1) Gz(k; r2,1"2)· 0 0 • 

Gz(k; r,r') being given by (2.4). Because the inte­
grand in Al(k) is symmetric in r1, .. 0, rn, and because 

19 E. To Whittaker and Go N. Watson, Modern Analysis (Cam­
bridge University Press, New York, 1948), po 211 ffo 



                                                                                                                                    

326 ROGER G. NEWTON 

of the symmetry properties of the spherical Bessel 
functions we can write 

'" i'" iTI f Tn

-

1 

.:l1(-k)=1+L k-n drl dr2···· drn 
I 0 0 0 

with 

dl (k ; rl, .. ,r n) 

WI (krl)UI (krl) WI (krl)ul(kr2) •.. WI (krl)UI(kr n) 
= WI(krl)ul(kr2) wl(kr2)ul(kr2)" ,wl(kr2)ul(krn ) 

WI(krl)UI(kr n) WI(kr2)ul(kr n)' .. wl(kr n)nl(kr n) 

=WI(krl)SI(k; rl; r2, .. ,r n). 

Consequently, 

.:ll( -k) = 1+k-li"'dYW,(kr)V(r)g,(kr), (4.11) 
o 

where 

'" iT iT! i Tn
-

1 

g,(k,r)=ul(kr)+L k-n drl dr2'" drn 
I 0 0 0 

Now since SI (k; r; r,r2,' ',rn)=O and 

W[wI(kr),UI(kr)]=k, 

we readily find that 

W[W,(kr),g,(k,r)]=k[ 1+ * k-n iT drl'" i T
n-1drn 

XV(rl)'" V(rn)dl(k; rl,' .,rn )]. (4.12) 

Differentiation with respect to r yields 

WI (kr)gz" (k,r) - gl(k,r)wt (kr) = kwl(kr) V (r)gl(k,r), 

which, because of the differential equation satisfied by 
wl(kr), shows that gl(k,r) solves the differential equa­
tion (2.10). Furthermore one easily sees from (4.12) 
that as r~ 0, 

gl(k,r) = ul(kr)+o(rl+1). 

It follows that 
gl(k,r) = k'+lcpl(k,r), 

and therefore by (4.11) and (4.3), 

jl(k) = .:ll( -k). 

(4.13) 

(4.14) 

Thus the function fz( -k) is the Fredholm determinant 
of Eq. (2.8).10 

We now want to examine the analytic properties of 
jl(k) in the complex plane; that will, via (4.5), give us 
information on the analytic properties of the S matrix. 

In order to extend fz(k) into the complex plane we 
may use either (4.3) or (4.4). The inequalities (3.9) 

and (3.11) lead from the second version of (4.4) to 

Ijl(k)-11:::;C f."'dr!V(r)le(v+IVIlTr(1+lklr)-I. (4.15) 
o 

Under the assumptions (3.1) on the potential, the 
integral thus converges absolutely so that jl(k) exists 
and is continuous for all k in the closed lower half­
plane. If the potential also satisfies (3.14) then the same 
conclusion can be drawn in an additional strip in the 
upper half-plane with Imk::; a. Because of the absolute 
convergence we may differentiate (4.4) with respect to 
k under the integral sign and then use inequalities ob­
tained from differentiating (3.8) with respect to k. 
The result is that under the hypothesis (3.1) jl(k) is 
an analytic function of k regular in the open lower half 
of the complex plane and continuous on the real axis . 
If the potential fulfills (3.14) then jl(k) is analytic also 
in a strip in the upper half-plane with Imk<a. If the 
potential vanishes asymptotically faster than every ex­
ponential (e.g., if it has a gaussian tail or if it vanishes 
identically beyond a finite radius) thenjl(k) is an entire 
function of k. In any region of analyticity connected 
with the real axis (4.7) leads to 

jl*( -k*)= jl(k). (4.7') 

The arguments at the end of Sec. 3, which in specific 
cases of (3.14) may allow the analytic continuation of 
jl(k,r) beyond Imk=a by examination of the terms in 
the successive approximations,I8 are now applicable to 
jl(k). It may thus be possible in many practical cases to 
use the first Born approximation in order to extend the 
analytic continuation to Imk<2a, the second, to 
Imk < 3a, etc. 

We now want to examine the behavior of jl(k) as 
k -" 00. The inequality (4.15) tells us directly that for 
Imk::;O, 

lim jl(k) = 1. (4.16) 
Ikl-->'" 

In fact we can conclude from (4.3), (3.17), and (2.22) 
that when Imk::;O, as I k I ~ 00, 

j,(k) = 1+ (2ik)-li'" drV(r)+o(k-I), (4.16') 

provided that VCr) is integrable at r=O; otherwise the 
second term need be only 0(1). Equation (4.16') says 
that at very high energies the Born approximation for 
fz(k) is good.20 

In the upper half-plane we can draw interesting con­
clusions only if for r> R the potential vanishes identi-

20 The analyticity properties of ,,(k) together with (4.7) and 
(4.16) imply, of course, that !I(k) satisfies a simple "dispersion 
relation" obtainable immediately from Cauchy's theorem. This 
was pointed out explicitly by Giambiagi and Kibble,"1 but it does 
not appear to have any useful application. 

21 J. J. Giambiagi and T. W. B. Kibble, Ann. Phys. 7,39 (1959). 
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cally. In that event (4.15) shows that 

I (J/(k)-l)e2ikR
I sC iRdrl VCr) Ir(1+ Iklr)-'. 

° 
This implies that for Imk>O 

(J/(k) _1)e2ikR = 0(1) as 1 k 1 ~ 00 (4.17) 

if the potential has a finite first absolute moment; if it is 
also absolutely integrable then the right-hand side of 
(4.17) is O(lkl-'). 

Next we want to look at the zeros of /I(k). Suppose 
that fl(k) vanishes at a point in the lower half-plane: 

fl(ko)=O, Imko<O. 

Since by (4.3) this means that the Wronskian between 
fl(ko,r) and 'P1(ko,r) is zero, the two solutions are 
multiples of one another: 

fl(ko,r) = c'Pl(ko,r). (4.18) 

But ko being in the lower half-plane, the left-hand side 
of (4.18) decreases exponentially at infinity, while the 
right-hand side vanishes at the origin. Consequently, 
both sides are square integrable and ko2 is a discrete 
eigenvalue of the Schrodinger equation; there is a 
bound state of energy h2kN2p.. 

It is proved by the standard method that the eigen­
values k0

2 must be real. If ko is a root of /I(k) in the 
lower half-plane, then by (4.7'), so is -ko*. Multiplica­
tion of the Schrodinger equation for 'PI(k,r) by 'PI(k',r) 
and subtraction from that for 'PI(k',r) multiplied by 
'PI(k,r) leads to 

(d/ dr) W[ 'P1(k,r» 'PI (k',r) ] 
= (k2-k'2)'PI(k,r)'P/(k',r). (4.19) 

If we now set k=ko, k'= -ko* and integrate from r=O 
to r= 00, we get 

and therefore k0
2 must be real. 

The converse is also true. If k0
2 is a discrete eigen­

value then fl(ko,r) must vanish at r=O when ko is 
taken in the lower half plane. Hence by (4.3') fl(ko) =0. 

If ko= -iK, K>O, is a root of fl(k) and k=iK lies in a 
region of analyticity of jl(k) connected with the real 
axis, then Eq. (4.1) at once yields the following value 
for the constant C of (4.18): 

c=-2i- IKI+'/fl(iIKJ). (4.20) 

In general, however, we cannot draw this conclusion. 
The function fl(k) cannot have any roots on the real 

axis, except possibly at k=O. That follows at once from 
the fact that by (4.7) fl( -k) vanishes when fl(k) does 
for real k. Equation (4.1) then shows that 'PI(k,r) would 
vanish identically in r. Since that contradicts the 

boundary condition (3.3), fl(k) cannot vanish for 
real k=l=O. 

It is possible for fl(k) to be zero for k=O. We then 
conclude that the function 

hi (k,r) == klfl (k,r) 

is, for k=O, a multiple of 'P1(O,r) 

hi (O,r) = c'PI(O,r). (4.18') 

For l=O, however, the boundary condition (3.4) shows 
that hi (O,r) is different from zero at r= 00 so that 'P1(O,r) 
is not normalizable and k = ° is not a discrete eigenvalue. 
For l>O, on the other hand, the inequality (3.15) 
shows that as r ~ 00, 

hl(O,r)=O(rl) ; 

'P1(O,r) is therefore square integrable and zero is a dis­
crete eigenvalue if fl (0) = 0. We then have a zero energy­
bound state. For l=O this can happen only if the po­
tential fails to satisfy (3.1); see Sec. lOf for an example. 

The next question is naturally the multiplicity of the 
zeros of fl(k). Take first the case for which /I(ko)=O 
with Imko<O. Differentiation of (4.3) with respect to k 
(indicated by a dot), subsequently setting k= ko and 
using (4.18) leads to 

jl (ko) = kolc'W[jI(ko,r),j1 (ko,r) ] 
+ kolCW[ 'PI (ko,r), ,Pt(ko,r)]. (4.21) 

The right-hand side can be evaluated by differentiating 
(4.19) and the equivalent equation for fl(k,r) with 
respect to k, then setting k= ko. The result is that if 
fl(ko)=O, then 

jl(ko)= -2kol+{C i'dr' 'P12 (ko,r') +c1f"'dr'N (ko,r') ] 

(4.21') 

Because of the boundary condition (3.4), c =1= 0; further­
more, 'P/(ko,r) is real for purely imaginary ko; hence the 
right-hand side of (4.21') cannot vanish. Consequently, 
jl(ko) =1=0 when /I(ko)=O and the zero is always simple. 

The point k=O requires special consideration. Sup­
pose that fl(O)=O. We then take k first in the lower 
half-plane, Imk<O, and differentiate the equivalent of 
(4.19) for hl(k,r) with respect to k, subsequently settin~ 
k'=k: 

W[h/(k,r),hl(k,r)J= -2k f"'dr'hl(k,r')' (4.22) 

The next step is to let k tend to naught inside a cone of 
opening angle less than 7r: 

-Imk:2:~lkl, ~>o. 

It is then easily shown by means of the inequalities 
(3.16), (3.15), and (3.9) that the right-hand side of 
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(4.22) has the same limit with k ~ ° as states of angular momentum 1 was given by Bargmann22 : 

={ 0, if 1;:::1, 

-i, if 1=0. 

As a result, (4.22) leads to 

. {a, 
W[hl(O,r),hl(O,r)]= . 

2, 

if l;::: 1, 

if l=O, 
(4.23) 

when k=O is approached as indicated. Equation (4.21) 
for ko = ° reads 

jl(O) = rlW[hl (O,r),hl (O,r)] 

+CW['PI(O,r),~/(O,r)], (4.21") 

where we may let r tend to zero. Equation (4.23) thus 
shows that if /1(0)=0, then 

. {iC-l, if l= 0, 
/1(0)= 

0, if I;::: 1. 
(4.24) 

ForJ;::: 1 one further differentiation is required. Since 
then /1(0)=0, we have from (4.21) and (4.22) 

~(O) = limk-1jl(k) = - 2cfoodr'P12(0,r). (4.21'") 
k~O 0 

We therefore find that if /1(0)=0, then as k~O with 
-Imk;:::Elkl, E>O, 

as well as 

{
O(k-1), if l=O, 

1/ I(k)= 
f O(k-2), if l;::: 1,. 

{
O(k), if l=O, 

fl(k) = 
O(k2), if l;::: 1, 

(4.25) 

( 4:25') 

which is to say that fl goes to zero exactly as k or k2, 

respectively. If fl(k) is analytic in a neighborhood of 
k=O, then the statement is simply that, if fl(O)=O, 
then the zero is simple for 1= ° and double for I;::: 1. 

We may now draw a conclusion concerning the num­
ber of zeros of fl(k) in the lower half of the complex 
plane. The function fl(k) being regular analytic there, 
its zeros cannot have a point of accumulation except 
possibly at k=O or k= 00. These two points cannot be 
accumulation points of roots either, the former because 
of (4.25) and the latter because of (4.16). Consequently 
the number of zeros must be finite. This proves that 
the number of discrete eigenvalues (i.e., bound states) 
for a given I value must be finite if the potential satisfies 
(3.1). An absolute bound on the number nz of bound 

nl<foodrr 1 V(r) 1/(21+1), 
o 

(4.26) 

which shows at the same time that the total number of 
bound states is finite. 

In general we cannot say anything about the zeros 
of fl(k) in the upper half of the complex plane. They 
do not indicate eigenvalues. If fl(ko)=O and both ko 
and -ko* are in a region of analyticity of fl(k) con­
nected with the real axis, then (4.7') shows that we 
must also have fl( -ko*)=O. The roots then appear in 
pairs symmetric with respect to the imaginary axis. 
Furthermore, Eq. (4.1) shows that if k0

2= -il, K>O, is 
a discrete eigenvalue so that fl( -iK)=O, and if +iK 
lies in a region of analyticity of fl(k,r) connected with 
the real axis then we cannot have fl(iK)=O. Particu­
larly, if the potential satisfies (3.14), then fl(iK) cannot 
vanish if -K2 is an eigenvalue with K<a. In other 
words, fl(iK) can vanish under these circumstances only 
at the expense of a singularity of fl(k,r) at k=iK. 

If the potential vanishes identically beyond a finite 
distance R then quite a bit can be said about the zeros 
of fl(k). First of all, fl(k) must then have infinitely 
many complex roots in the upper half-plane. That fact 
is shown as follows. 23 The function 

(4.27) 

IS ill that case an entire function of k2• Because of 
(2.22), (3.13), and (4.4) the asymptotic behavior of 
/I(k) when Imk ~ + 00 is 

R 

fl(k)",- (- )1(2ik)-1e-2ikRJ: drV(r)e-2ik(r-R), (4.28) 

and hence by (4.16) that of gl(k2) is the same. Suppose 
then that near r=R the potential has an asymptotic 
expansion whose first term is 

V(r) "'c(R-r)", u;:::O. (4.29) 

Then (4.28) and (4.16) imply that as Imk ~ + 00 

gl (k2) '" const. X k-"-2e-2ikR. (4.28') 

Therefore, the order27 of gl(k2) is !. But an entire func­
tion of nonintegral order has necessarily an infinite 
number of zeros.29 Because of (4.28'), moreover, and 

22 V. Bargmann, Proc. Nat\. Acad. Sci. U. S. 38, 961 (1952). 
23 This was shown first by Humblet,24 then independently by 

Rollnik.25 The more general proof below follows Regge.26 
24 J. Humblet, Mem. Soc. roy. sci. Liege, 4, 12 (1952). 
25 H. Rollnik, Z. Physik 145, 639 and 654 (1956). 
26 T. Regge, Nuovo Cimento 8, 671 (1958). 
27 The definition of the order p of an entire function is 

p=lim sup (log logM(r)/logr), 
r-oo 

where M(r) is the maximum modulus of the function for \z\ =r, 
see Boas,28 p. 8. 

28 R. P. Boas, Entire Functions (Academic Press, Inc., New 
York, 1954). 

29 See Boas,28 p. 24. 
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the analyticity of gl, only a finite number of them can 
lie :on the imaginary axis. As a result, gl(k2) has in­
finitely many complex roots, which appear symmetri­
cally with respect to the real axis and with respect to 
the imaginary axis. Those in the upper half-plane must 
be roots of .fz(k) and those in the lower, of jl(-k). 

The same argument which excludes infinitely many 
zeros on the imaginary axis also excludes infinitely 
many zeros above any ray through the origin, since 
there also the right-hand side of (4.28') has no zeros. 
At the same time it follows from (4.15) that jl(k) -t 1 
as I k I -t 00 on any line parallel to the real axis in the 
upper half plane; consequently, the number of zeros in 
any strip above the real axis is finite. In other words, 
although the total number of roots is infinite, for any 
given positive numbers Jl. and v there is but a finite 
number of them with imaginary part less than v or 
with a ratio of imaginary to real part greater than Jl.. 

Since it follows bom (4.16) that 

f"'dkk-2 10gg/(k2) < 00, 

1 

we can also immediately draw the conclusion that if 
{k n } are the roots of jl(k), then30 

Ln I 1m (kn-1
) I < 00. 

Since the roots of jl(k) appear in pairs symmetric 
with respect to the imaginary axis we can also say that 

L k n- 1 converges 

provided that we always add k n- 1 and (- k n *)-1 to­
gether first. 

The distribution of zeros kn in the right half-plane 
can be shown31 in more detail to be such that as n ---> 00 

Rek n =n1l'"/R+O(1), 

Imk n = [(o+2)/2RJ 10gn+O(1). 
(4.30) 

The entire function jl(k) can now be written in the 
form of an infinite product. (We are still dealing with 
the case in which V=O for r>R.) According to Hada­
mard's factorization theorem32 we can write 

jl(k) = jl(O)e-ick fr(1-~)eklkn 
1 k n 

(4.31) 

assuming for simplicity jl(O) =1=0.33 The constant c can 
be evaluated by means of a theorem by Pfluger4 which 
tells us that the asymptotic behavior for large I k I of 
(4.31) is for k=±ilkl 

I k 1-1 log Ijl(k)/ jl(O) I =A TL Imk n- 1±c+o(1). 

ao See Boas,.8 p. 134; the argument is due to Regge.26 
31 See Humblet," p. 45; also Regge,2. which contains an error 

of a factor of 'If" in the denominator of Eq. (19). 
32 See, for example, Boas,28 p. 22 . 
.. Otherwise we must replace fl(O) by constXk for 1=0, or by 

constXk2 for 121. 
34 A. Pfluger, Comm. Math. Helv. 16, 1 (1943); theorem 6B. 

Comparison with (4.16) and (4.28') shows that the 
right-hand side must equal 2R for k= ilk I, and zero, 
for k= -i I k I ; hence, we must have 

c+i L kn- 1=R, 

and consequently26 

co 

jl(k) = jl(O)e-ikR II (1-k/kn)' (4.31') 
1 

If we differentiate the logarithm of this equation and 
set k=O we obtain at once by (4.9) 

R+~O/(k)1 =L Imkn/lknI2. 
dk k~O 

( 4.32) 

The only negative contributions on the right-hand side 
come from the bound states. 

It should be reemphasized that all of the foregoing 
detailed conclusions are true only if the potential van­
ishes identically beyond a finite point. 

We may now compare IPI to the physical wave func­
tion 1/;/. Equation (4.8) shows the difference in their 
analytic properties. Under the hypotheses (3.1) 1/;1(k,r) 
is in general regular only in the upper half of the 
complex k plane. But even there it has simple poles at 
k=ilkol if k 0

2 is an eigenvalue. That is the reason why, 
in contrast to IPI(k,r), the physical wave function 1/;1 (k,r) 
cannot always be expanded in a Born series. 

If we think of the potential multiplied by a possibly 
complex scale factor X, 

V-tXV, (4.33) 

then we saw that IPI(k,r) can always be expanded in a 
power series in X which converges absolutely for all 
values of X, and so can jl(k). If, however, for a given 
value of k, fl( -k)=O when X has some complex value 
Xo, then the power series in X for 1/;1(k,r) (Born series) 
will certainly not converge absolutely for X~Xo. Thus 
the Born series for 1/;1 will have a finite radius of 
convergence. 

The inequality (4.15) shows directly an important 
fact about the Born series. Since for every X, jl(k) 
differs arbitrarily little from unity when k is made 
large enough (real or in the lower half plane) jl(k) can, 
for any given complex X, have no zeros on the real axis 
beyond a certain point. Hence for every potential that 
satisfies (3.1), the Born series for 1/;1 (k,r) will necessarily 
converge absolutely if only k is large enough. Further­
more, if k is sufficiently large, the first Born approxi­
mation is good. 

As a function of E, 1/;1 has a branch cut along the 
positive real axis. On the "physical" sheet (Imk~O) of 
its Riemann surface 1/;1 is a regular analytic function of 
E, except for simple poles at the bound state energies 
E=-IEnl. At E=O it is at worst O(E!) (when ap­
proached inside the first sheet of the Riemann surface). 
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5. PROPERTIES OF THE S MATRIX 

We may now use (4.5) in order to draw conclusions 
concerning the S matrix from the properties of lz(k). 

On the real axis Sz is continuous and because of (4.16) 

(5.1) 

For any potential that satisfies (3.1) the phaseshift 
thus necessarily approaches an integral multiple of 7r 

at high energies. If, in addition, the potential is inte­
grable at r=O then (4.16') yields immediately the Born 
approximation result as k ~ ± 00 

1i"" k tanOz(k) = -- drV(r)+o(l). (5.1') 
2 0 

If all we know about the potential is (3.1) then we 
can say nothing about the properties of Sz(k) in the 
complex plane, since as soon as we leave the real axis 
either ll(k) or iz( -k) may fail to be regular. In other 
words, Sz(k) may have singularities of any type any­
where in the complex plane off the real axis. We cannot 
even conclude from (4.5) that SI(k) has a pole at 
k = i I ko I is k0

2 is a discrete eigenvalue, because lz (i I ko I ) 
may be zero. 

If, however, the potential satisfies (3.14) then Sz(k) 
is necessarily an analytic function regular in the strip 
O::;Imk<a, except for simple poles at k=iKn whenever 
-Kn2 is an eigenvalue and O<Kn<a. In specific cases the 
analytic continuation of SI(k) may be carried further 
than I Imk I = a by the argument following (4.7'); 
namely, the continuation of successive terms in the 
Born approximation. 

If the potential decreases asymptotically more rapidly 
than every exponential, particularly if it vanishes 
identically outside a finite region, then Sz is regular in 
the entire upper half-plane except for simple poles at 
k=iKn, Kn>O, whenever -Kn2 is a discrete eigenvalue. 
The residues at such poles are readily found35 by 
(4.20), (4.21'), and (4.8): 

Resn = 1/ SI( -iKn) 

(- )1+liUI(iKn )]2 

(5.2) 

which is purely imaginary and 

-i( _)1 Resn>O. 

In the lower half of the complex plane singularities 
may again occur anywhere. If the potential fulfills 

ai This result was first written down explicitly for l=O by 
Liiders36 ; see also BU.37 

36 G. Liiders, Z. Naturforsch. lOa, 581 (1955). 
37 N. Bu, Phys. Rev. 74, 131 (1948). 

.(3.14) then SI(k) is regular there for - Imk< a, except at 
Isolated points where it may have poles of finite order. 
The latter occur at the zeros of lz( -k). For a potential 
of finite range that statement holds for the entire lower 
half-plane. 
. For a potential of type (3.14) then the zeros of ll(k) 
111 the upper half-plane sufficiently close to the real 
axis lead to resonancelike peaks in SI(k) on the real 
axis.38 The zeros of lz(k) on the positive imaginary axis 
are sometimes referred to as "virtual bound states." 
For a potential of finite range R we may immediately 
refer to the detailed discussion in Sec. 4 of the distribu­
tion of zeros of ll(k) in the upper half-plane. Thus there 
is always at most a finite number of virtual states and 
an infinite number of "resonances" distributed as 
shown in (4.30). 

It is worthwhile to translate some of the foregoing 
statements into the language of energy. SI(E) then has 
a branch line along the positive real axis. If the poten­
tial satisfies (3.14) then Sz(E) is an analytic function 
on a two sheeted Riemann surface, regular on the 
"physical sheet" (Imk2:: 0) for I E I <h2a2/2J.1, except for 
simple poles at E= - I En I, where En are the energies 
of bound states; on the sheet reached via the cut along 
the positive real axis Sz(E) is regular for I E I <1i2a2/2J.1, 
except at a number of discrete points where it may have 
poles of finite order. The latter, if sufficiently close to 
the positive real axis, lead to resonancelike peaks in the 
functional behavior of Sz(E) for positive E. 

If the potential vanishes identically for r> R then 
the foregoing statements hold on the entire Riemann 
surface (except at infinity); furthermore, on the first 
sheet we then have by (4.16) and (4.17) 

lim [Sz(E)-1]e2ikR=0. (5.3) 
lEI .... "" 

If in addition the potential is absolutely integrable at 
the origin, then 

[Sz(E)-l]lkle2 ikR=O(l) as lEI ~ 00. (5.3') 

In either case one may apply Cauchy's theorem to the 
integral 

fdE'[SZ(~')-1]e2ik' R 

E-E 

over a contour running above and below the branch 
cut and closed by a circle of large radius on the first 
sheet of the Riemann surface. Since the values of Sz 
on the upper and lower rim of the cut are related ac­
cording to (4.5)-(4.7) by 

SI(E+if)=SI*(E-if), 

38 I should prefer not to refer to these peaks as resonances but 
to r~serve that name for peaks which are indeed caused by a 
phys!cal resonance phenomenon. Otherwise the term loses its 
phYSical content. In that sense, then, a single channel problem 
never has resonances except for the low energy type associated 
with a bound or "almost bound" virtual state. For the same reason 
I shou!d no.t like to refer to the complex zeros of /l (k) as decaying 
or radIOactive states. 
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the result is the dispersion relation,39 

1 f'" Im[(SI(E')-1)e2ik'R] 
+-P dE' , 

7r 0 .E'-E 
(5.4) 

where En= -n,2Kn2/2p. are the bound state energies, 
{Resn } are the residues of SI at k=iKn given by (5.2), 
and P denotes the Cauchy principal value. Because of 
the presence of e2 ikR this is not a very useful equation. 

More practically, we may represent the S matrix by 
the use of (4.31') as an infinite product40 : 

00 kn-k 
SI(k)=e-2ikR II --. 

n=1 kn+k 

This amounts to writing the phase shift as 

N k 
Mk)=-kR-L tan-L 

n=l Kn 

N' k "" 2kka (2) 
+ L tan-I-+ L tan-I---

n=1 Kn' a=1 [ ka [2- k2' 

(5.5) 

(5.5') 

where En= -h2Kn2/2p. are the hound state energies, 
E n'= -h2Kn'2/2p. are the virtual state energies, and Ea 
=n,2(ka(l)+ika(2»2/2J.j, with ka(l»O, ka(2»0, are the 
"'resonances." The distribution of the energies Ea is 
such that for any two given positive numbers c and d 
there exists only a finite number of Ea's above the ray 
ImEa=c ReEa or below the parabola ImEa=2d 
X (d2+ReEa)t. 

Notice that each term in the a-sum contributes an 
increase in the phaseshift by 7r in the vicinity of k:::::: [ ka [. 
The contribution of the linear decrease in the first term, 
however, is such that almost all these increases are 
compensated by subsequent decreases. If the rising part 
of the curve leads to a "resonance" (i.e., a value of 01 
which is an odd mUltiple of !7r) then so must the falling 
part (for almost all a), although that type of "reso­
nance" bears no relation to the ka • 

Another point to notice is that, in spite of the 
.appearance of infinitely many "resonance" terms in 
(5.5'), because of (5.1) only a finite number of them 
can actually lead to sin2ol= 1. There always exists an 
energy beyond which this can no longer occur.41 Fur-

39 See, e.g., E. Corinaldesi, Nuclear Phys. 2, 420 (1956). 
40 Such a product representation was written down by HU,37 for 

·example, but not proved. It was proved under the conditions of 
this paper by Regge.·6 

41 It is easily seen by considering hz (k) == /1 (k)+ /1 ( - k) that 
whenever the potential is at least exponentially decreasing at 
infinity there can be only a finite number of points where sin'll l = 1, 
i.e., hl(k)=O. In that case hl(k) is analytic on the real axis and, 
by (4.16), approaches unity at k -> ± 00 ; hence it cannot have 
infinitely many real zeros. If the potential does not satisfy (3.14) 
for any positive value of a then no such conclusion can be drawn. 

thermore, it is easily seen by means of (4.30) that the 
maximal slope of individual terms in the a sum, which 
for large a occurs at k"'ka(l), tends to naught as 1/ka(2). 
Consequently, not only are there but a finite number 
of "resonance" points, but beyond a certain energy the 
phase shift becomes monotonely decreasing. 

Another way of representing SI(k) if V(r)=O for 
r> R is a Mittag-Leftler expansion.42 In order to do that 
we need an estimate for the residues of SI(k) at k= -kn 

if jl(kn) = O. Because of the distribution of zeros given 
by (4.30) and by (4.4) the leading terms of jl(k).in the 
vicinity of k n when n ~ 00 are [assuming integrability 
of VCr)] 

jl(k) = 1- (- )1 (2ik)-1 fRdrV(r)e-2ikr+O(kn-I), (5.6) 

° while 

jl(k)= (- )lk-l!""drrV(r)e-2ikT+O(kn-l). 
o 

If we assume (4.29) then it is readily seen that we get 

jl(k) = -2iRUI(k)-1]+O(kn- 1) 

since for large k only the vicinity of r= R contributes to 
the integral. If we now evaluate jl at k= k n then we 
obtain, 

jl(kn ) = 2iR+O(kn-l). 

Consequently, the residue of SiCk) at k= -kn, 

Rn= - fz( -kn)jj!(kn) 
is by (4.16'), 

(5.7) 

(5.8) 

As a result of (5.8), (4.6) and its unitarity, the S 
matrix can be written24 

(5.9) 

where PI(k) is an entire function of k and it is under­
stood that Rekn 2::0, and that for the finite number of 
purely imaginary poles of SI(k), Rn is one-half the 
(purely imaginary) residue. Since by (5.8) and (4.30) 
for large n 

Rn Rn* 
-+-=iR(7rn)-2+0(n-4 10g2n), 
kn2 kn *2 

the series in (5.9) converges for all k and the Mittag­
Leftler expansion is established. 

As a consequence of (5.9) we can write 

Re[1-SI(k)]=2 sin2ol(k) 

An(E-En)+!Bnrn 
=EQI(E)+E L , (5.9') 

n (E-En)2+trn2 

42 See, for instance, C. Caratheodory, Functionentheory I (Birk­
hauser, Basel, 1950), p. 215 II. This was first proved by Humblet24 
although written down without proof before, for example, by 
HU.37 The argument below is a simplified and somewhat less 
rigorous version of Humblet.24 
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where 

and 

A n+iBn=2Rn/kn, 

En+!ir n = h2kn
2/2p., 

is an entire function of E. The residues Rn can be ex­
pressed in terms of the k n • By (5.5) we have 

Rn km+k n 
_=2c2iknR II ---. 
k,. mr<n km-kn 

(5.10) 

The entire function PI(k) is also determined by the k,.; 
but no simple expression is known. 

An interesting relation between the phase shift and 
the wave function, when the potential vanishes for 
r> R, is obtained as follows: 

Differentiating the equivalent of (4.19) for ll(k,r) 
and 'PI(k',r) with respect to k' and then setting k= k' 
yields after integration 

W[jI(k,r),cPI(k,r)] = -2k irdr'll(k,r') <Pl(k,r') 
o 

since cPz'(k,r)=o(rl) and cPl(k,r)=o(rl+l) as r~O. Dif­
ferentiation of (4.3) with respect to k therefore yields 

jl(k) = Ik-1ll(k)- 2kl+1 i
r 

dr'll(k,r') <Pl(k,r') 
o . 

+kIW[fI(k,r),<PI(k,r)], 

where r~R. We then find by (4.1) that 

jl(k) jl(-k) d 
----=-IOgSI(k) 
ll(k) ll(-k) dk 

2ik21 { i r 

2k2 dr' <pNk,r') 
11M)12 0 

- r[ <pz'2(k,r) - <PI (k,r) <PI" (k,r)]+ <Pl(k,r) <PI' (k,r) }, 

or by (4.8), for r~R, 

d i r 

-oz(k)=2 dr'Iif;I(k,r') 12 
dk 0 

- k-2{r[ Iif;z'(k,r) 12-if;z" (k,r)if;l*(k,r)] 

-if;z' (k,r)1/;I*(k,r)}. (5.11) 

This equation takes on its most transparent form for 
l=O. Since it follows from (5.11) that 

d 
21if;I(k,r)12=k-2-{ }, 

dr 
we may also write 

d f"" dkoo(k)=2 0 dr[lif;o(k,r) 1
2-lif;oout(k,r)J2] 

+!k-1 sin2oo(k), (5.11') 

where if;lout is the free wave function equal to if;1 for 
r~R and then continued in for r<R. For t=l=O this 
cannot be done since if;lout is then not square integrable 
at the origin. Equation (5.11') directly illuminates the 
significance of a "resonance." Whenever the phaseshift 
varies rapidly upwards it means that there is a large 
probability for the particles to be found inside the 
region of interaction. 

We may also write if;oout explicitly; thus43 

d i R 

-oo(k)=2 drlif;o(k,r) ILR 
dk 0 

+!k-1 sin(2kr+2oo). (5.11") 

It follows from this that 

(d/dk)oo(k) > - R+!k-1 sin(2kr+2oo) 
~ - (R+!k-1). (5.12) 

We may also compare Eq. (5.11) with (5.5); that leads 
to 

2 f""dr[lif;o(k,r) 12-/if;oout(k,r) /2]+tk-1 sin2oo(k) 
o 

It should be recalled at this point that all the results 
from Eq. (5.3) on assumed that the potential vanishes 
identically for r> R. We now return to the general case, 
assuming only (3.1). 

The low-energy behavior of SI(k) is established as 
follows: The analytic function 1/ (k) being regular in 
the lower half of the complex k plane, we have 

~ r d logll(k)=nl, 
27rdc 

(5.14) 

where nl is the number of zeros of ll(k) in the lower 
half-plane and the path of integration C runs along the 
real axis from + 00 to - 00, avoiding the origin by a 
small semicircle of radius ~ in the lower half-plane, and 
closed by a large semicircle of radius K in the lower 
half-plane. Since each discrete eigenvalue produces a 
simple zero of ll(k), nl is the number of bound states 
of angular momentum t. 

The contribution to (5.14) from the large semi­
circle vanishes by (4.16) in the limit as K ~ 00. If near 
k=O we write44 

- 43 This equation and the following inequality were given by 
Liiders.36 The inequality (5.12) and the corresponding one ob­
tainable from (5.11) for 1= 1 were first derived by Wigner under 
more general assumptions; E. P. Wigner, Phys. Rev. 98, 145 
(1955). 

44 It is sufficient that that is true in every cone of opening less 
than 'II' in the lower half-plane. 
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then the contribution from the small semicircle is 

f d 10gjl(k) ~ q f d logk= -i7rq 

.) .) 

in the limit as t~ O. Consequently, (5.14) becomes, 
by (4.9), 

lim lim[o/(-K)-O/(-E)+OI(t)-OI(K) 
f-t() K-+oo 

+ilOg ! h(K) /1(-E)!]=27r(nl+!q). 
jl( -K) h(t) 

The imaginary term vanishes by (4.7). Furthermore, 
because of (4.7), ol(k) may be defined to be an odd 
function of k. We have therefore 

ol(O)-M 00 )=7r(nl+!q). 

A glance at (4.25) and (4.25') shows that q=O if 
jl(O) =1=0; q= 1 if jl(O) = 0 and 1=0; q= 2 if jl(O) = 0 and 
l~ 1. In the last case, as we saw, k=O is a discrete 
eigenvalue and should thus be added to nl. As a result 
we obtain the Levinson theorem46 

OI(O)-OI( 00) 

{
7r(nl+t), if 1=0 and h(0)=0, 

= (~1~ 
7rnl, otherwise, 

which constitutes the only generally valid relation be­
tween scattering phaseshifts and bound states. 

Because of (4.16), Ole 00) may always be defined to be 
zero. Equation (5.15) then determines the value of the 
phaseshift at zero energy. As a consequence of (5.15) 
we have 

{ 
-1, if 1=0 and h(O)=O," 

SI(O) = (5.16) 
1, otherwise. 

Notice that SI(O) = -1 implies by (2.15) that the 
scattering amplitUde becomes infinite at E=O. This 
happens whenever the potential is such that the 
slightest strengthening will introduce a new bound 
state of zero angular momentum. This is usually re­
ferred to as a zero-energy resonance. 

The next question that arises is how SI(k) approaches 
its limiting value at k=O. The answer is given most 
simply by using (2.21) in combination with (4.8) 

Sl(k)= 1-2iklf'" drul(kr) V(r) 'PI (k,r)/jl ( -k). (5.17) 
o 

• 45 Although this theorem ~as known before in less precise form, 
It was proved first by Levmson.13 The proof given here follows 
Levinson. It has been proved under more general hypotheses, 
namely, only the completeness of the set of eigenfunctions by 
J. Jauch! Relv. Phys. Acta 30, 143 (1957); see also A. Martin, 
Nuovo Clmento 7, 607 (1958). 

The inequalities (3.9) and (3.11) show that 

ISI(k)-ll ~ CI kl 21+l fOOdr l VCr) I 
o 

If jl(O) =1=0 then we may conclude that the right-hand 
side is 0(k21+1) provided that46 

fOOdr l VCr) I r21+2< 00. 
o 

If jl(O) = 0, then it follows from (4.25) that the right­
hand side of (5.18) is 0(k21-1) for 1~ 1, and 0(1) for 
1= O. Consequently, if the potential satisfies the fore­
going restriction, then as k ~ 0, 

SI(k)-l =2ie iol sinol 

{ 
-2, if 1=0 and jl(O) =0, 

= (5.19) 
o (k21+I), otherwise. 

If there is a bound state of zero energy (which is possible 
only if 1~ 1), then as k ~ 0 

SI(k)-1=0(k21- 1). (5.19') 

We may generate a Born series for SI(k) by using 
(5.17). Just as in the case of if;l(k,r), it is the presence 
of jl(-k) in the denominator which may prevent the 
convergence; as (5.18) shows, the numerator converges 
absolutely. We may, therefore, draw the same con­
clusion as at the end of Sec. 4. For every potential that 
fulfills (3.1) there exists an energy beyond which the S 
matrix can be expanded in an absolutely convergent 
Born series. Furthermore, it follows from (5.17) to­
gether with (4.16) and (3.13) that in the high-energy 
limit the first term in the Born series is a good 
approximation. 

Suppose that the potential V = - 1 u 1 produces 
neither a bound state of 1=0 nor a "zero energy reso­
nance." Then jo(O)¢O; the replacement (4.33) with 
1;\1 ~1 cannot make jo(O)=O either, for that would 
imply 

_\fXl 

drV(r) I CPo (O,r)j2 = -f'" drcpo*(O,r) cpo" (O,r) 
o 0 

= L'" drl 'Po'(O,r) 12, 
o 

which is possible only for real ;\. As a result the Born 
series for 

lim [SoCk) -lJ/k= jo(O)/ jo(O) 
k-->O 

46 D. S. Carter, Ph.D. thesis, Princeton University, 1952 
(unpublished). 
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converges absolutely. A glance at (2.15) shows that 
because of (5.19) the Born series for the scattering 
amplitude at zero energy then converges absolutely. 
But insertion of (2.2) and of the middle form of (2.3) 
in (2.12) shows that the Born series for 8 (k',k) using U 
is dominated by that for 8(0,0) using V = -I UI. Con­
sequently, a sufficient criterion for the Born series for 
the scattering amplitude of a potential U to coIiverge 
absolutely at all energies is that V = - I U I produce no 
s wave bound states or zero energy resonance.47 

We finally want to look at a question of more re­
stricted applicability: Is it possible to determine the 
Jost function fl(k) from the knowledge of SI(k)? The 
answer is "yes," provided that we know also in addition 
the energies of the bound states. [Their number is 
already determined by SICk) according to (5.15).J 

If there are nl bound states with energies -1i2I(n2/2P" 
Kn~O, then we know that SI(k) can be written by 
(4.5) as 

where 

and 

(5.20) 

is an analytic function regular in the lower half of the 
complex plane, without any zeros there, and with 

Ned(k) ~ 1 
Ikl--

there. Therefore logflred(k) is analytic in the lower half­
plane and vanishes at infinity; consequently, it satisfies 
a simple "dispersion relation." By Cauchy's theorem 

Pf"" 10gJ{"d(k') 
logjled(k)= -- dk'----

1I'i _"" k'-k' 
and hence 

1 f"" dk' 1m logfrd(k') 
loglfl(k) I =--P . 

11' _"" k'-k 

By (5.20) and (4.9) we have 

1m logflred(k)=01(k)-2 1: .. cot-1(k/I(,,) 

and therefore48 

1 foo dk'OI(k') E- En 
log I fl(k) I =--P +1: log--

11' -00 k'-k n E 
or 

( En) [IJ"" dk'OI(k')] fl(k)= II 1-- exp -- , . 
n E 11' -00 k - k+ZE 

~---

(5.21) 

(5.21') 

47 The foregoing argument is a slight generalization of that given 
by H. Davies, Nuclear Phys. 14, 465 (1960). 

48 The phaseshift is assumed to be defined so that it vanishes 
at infinity. A similar, but slightly less explicit form of Jz(k) was 
given by Jost ,and Kohn.49 

49 R. Jost and W. Kohn, Phys. Rev. 87, 977 (1952). 

in the limit as E ~ 0+. This explicitly expresses fl (k) 
in terms of the phaseshift ol(k) (Le., of SI(k» and the 
bound states. 

6. GREEN'S FUNCTION 

It i" very easy now to write down a complete Green's 
function or resolvent of the radial SchrOdinger equation 
(2.10). Such a function must satisfy the equation 

[ 
d2 1(1+1)] 

--+V(r)+---k2 @l(k;r,r') 
dr2 r2 

= -o(r-r'). (6.1) 

It is therefore a solution of (2.10) for r+r'. At r=r' its 
derivative suffers a discontinuity of unity: 

d l>=r'+-
-@I(k;r,r')I'=1. 
dr r~r'-. 

(6.2) 

Suppose, then, we want the Green's function appro­
priate to the boundary condition of (2.8), namely, such 
that it contains no incoming waves at infinity. It must 
then have the form 

{ 
f{)z(k,r)a(k,r'), r<r', 

@z(k'rr')= 
, , ft(k,r)b(k,r'), r> r'. 

Since @I must be continuous at r= r' we find that 

a (k,r) = C(k)fz ( -k, r), 

b(k,r) = C(k) f{)l(k,r). 

The requirement (6.2) then fixes C(k) 

C(k)W[ f{)l(k,r),jl( - k, r)J= 1. 

Because of (4.3) we then find that 

C(k)= (- )1+lk1/ ft(-k). 

As a result 

@l(k; r,r') = (- ) l+lk1 f{)z (k,rdfl ( -k, r>)/ ftC -k) 

= (- ) l+lk-V--z (k,r dfz( - k, r». (6.3) 

From the analyticity of f{)l(k,r), fl(k,r) and fz(k) we can 
therefore infer the following properties of the Green's 
function @l(k;r,r'). 

For each fixed rand r', @l(k; r,r') is an analytic 
function of k regular in the open upper half of the 
complex plane and continuous on the real axis, except 
for simple poles at k=iKn if _1(,,2 is a discrete eigen­
value, and except at k=O where it may be as singular 
as O(k-2) when approached from above the real axis 
(for 1=0, it is at worst O(k-l». 

In the language of the energy E, @l(k; r,r') has a 
branch cut along the positive real axis. On the "physi­
cal" sheet of its Riemann surface (Imk~O) it is a 
regular analytic function except for a finite number of 
simple poles on the negative real axis at the position of 
the bound states. At E=O, it has a branch point and 
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may in exceptional cases be O(E-I) when E=O is 
approached from the first sheet of the Riemann surface. 
[For 1=0, O(E-i).] As E-t 00 on the first sheet, it 
follows from (3.13), (3.17), and (3.16) that 

®1(E; r,r')=GI(E; r,r')+o(lkl-Ie-v1r-r'l) 
= (2ik)-I(eik(r>-rd- (_ )leiHr>+rd) 

+o(lkl-le-vlr-r'I). (6.4) 

The function ®1(E; r,r') taken at the upper rim of 
its branch cut (i.e., at k>O) is usually denoted by 
®l(+); when we follow its analytic continuation around 
the origin to the lower rim of the cut (k <0) we obtain 
®IH. 

In general nothing can be said about a possible 
analytic continuation of ®l beyond the branch cut onto 
the second sheet. If the potential satisfies (3.14), then 
it is regular there as far as I E I < a2h2/2J,l, except possibly 
for poles of finite order. The latter, if sufficiently close 
to the positive real axis, lead to resonancelike peaks in 
the scattering amplitude. If the potential vanishes at 
infinity faster than every exponential (e.g., if it is 
identically zero beyond a finite point), then ®l has an 
analytic continuation into the whole second sheet of 
its Riemann surface, where it then must have infinitely 
many poles of finite order. 

The relation between ®l and Sl is given directly by 
the solution of (2.8): 

if;ICk,r) =ul(kr)+ foodr'®ICk; r,r') V(r')ul(kr'), (6.S) 
o 

which, inserted in (2.21), yields 

Sl(k) = 1-2ik-II'" drul(kr)V(r)ul(kr) 
o 

X®ICk; r,r') V (r')ul(kr'). (6.6) 

The difference in analytic behavior between SI(k) and 
®/(k; r,r'), the latter being regular in the upper half­
plane (except for the bound state poles), while the 
former need not be regular there, comes from the pos­
sible divergence of the integrals in (6.6). 

7. COMPLETENESS 

We now want to prove the completeness of the set 
of eigenfunctions of the radial Schrodinger equation 
under the assumption (3.1) on the potential. The idea 
of the proofliO is to evaluate the integral 

f dE®I(E; r,r') 

50 This proof follows Jost and Kohn,49 Appendix. It is the type 
of proof given by Titchmarsh, see E. C. Titchmarsh, Eigenfunction 
Expansions I (Oxford University Press, New York, 1946). 

over a closed contour running along the two rims of the 
branch cut in the complex E plane and closed by a large 
circle at infinity on the first sheet of the Riemann sur­
face. On the one hand, that integral is evaluated by 
Cauchy's residue theorem in terms of the bound state 
poles on the negative real axis. On the other hand, it is 
explicitly written down in terms of its various con­
tributions. The whole procedure is a little simpler, 
however, in the k plane. 

We consider the integral 

fCr)=. f kdk foodr'h(r')®IC -k; r,r'), C7.1) 
C 0 

where ®l is given by C6.3), her) is an arbitrary suffi­
ciently well behaved function of r (square integrability 
suffices), and the contour C of the k integration is the 
same as in (5.14). 

The integral fer) is written 

[=[1+[2 

flCr) = - fdkk 1+l I r 
dr'h(r') <PI Ck,r')fl (k,r)/ ft(k) C7.2) 

C 0 

[2Cr)= - idkkl+lfOOdr'h(r')ft(k,r') <PICk,r)/fl(k). (7.3) 
C r 

We first consider fl{r). 
Suppose that the discrete eigenvalues are -Kn2• Then 

we write (Kn>O) 

<Pl(n) (r)=. <PI ( -iKn, r), 

fl(n) (r)=.fz( -iKn, r), 

C,,='il(-iKn ). 

Since <Pl(k,r), fl(k,r), and fl(k) are analytic functions 
regular in the lower half of the complex plane and 
fl(k) has simple zeros at k= -iKn, the integral fl(r) is 
evaluated immediately by means of Cauchy's residue 
theorem 

[l(r) = -27ri L i r 
dr'h(r') <Pl(n) (r')f/") (r) (-iK.,)l+I/C".. 

" 0 

If we call 

iOOdr[<pl(n) (r)]2=.N ,,2, 

then C 4.21') reads 

Cn= -2an ( -iKn)l+lN,,2, 

where 

Thus we obtain 

h(r)=i7r L frdr'h(r')<Pl(n)(r')<pz(n)(r)Nn-2. (7.4» 
n 0 
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On the other hand, we evaluate II directly. The con­
tribution 11< to the k integral from the small semicircle 
vanishes in the limit as its radius tends to zero, except 
when fl(O)=O. In that case it still vanishes for 1=0, 
because of (4.25). For 1?,1 we write 

fl(k) = cok2+o(k2). 

The contribution from the small semicircle is then by 
(4.21) seen to be 

11«r) = -i1r frdr'h(r') 'PI(O) (r') 'PI(O) (r)No-2, (7.5) 
o 

where 

and 

The contribution IIR to I I from the large semicircle 
is evaluated by the use of the asymptotic functions for 
large Ikl. Thus by (3.13) and (3.17) 

IIR '" !ifT dr'h(r')! dk(e-ik(r-r') - (- )le-ik(r+T'» 
R-.oo o s.c. 

'" !h(r)f dkk-I = !i7rh(r). (7.6) R .... oo 
B.C. 

The remaining contribution liE to II is the integral 
over the real axis, where we may use the fact that 'P1(k,r) 
is an even function ofk and then (4.1) and (4.7) ; thus 

11E(r) = £Tdr'h(r')(i~'+ £~)dkkl+1 
X 'P1(k,r')fl(k,r)/ fl(k) 

= -i fTdr'h(r') (L:'+ £~)dkk21+2 
X 'Pl(k,r') 'PI (k,r)/ Ifl(k) 12. 

We may now let E -') 0 and get 

11E(r)=-2ifrdr'h(r') f"'dkP l+2 
o 0 

X 'Pl(k,r') 'P1(k,r) /1 ft(k) \2. (7.7) 

Equating the sum of (7.5)-(7.7) to (7.4) yields 

iT [ J'''' 'Pl(k,r')'Pl(k,r) 
h(r)=2 dr'h(r') 2 dkk21+2-----

o 0 7r1!t(k)12 

'P1(n) (r') 'Pl(n) (r)] 
+2: , (7.8) 

n N n2 

where the sum now includes the bound state of zero 
binding energy if there is one. 

We then go through the same arguments for 12(r), 
where we may replace the upper limit of the r' integra­
tion by r+#L, #L being an arbitrary positive number. The 
result is 

f
r+~ [ foo 'P1(k,r')'Pl(k,r) 

h(r)=2 dr'h(r') 2 dkk2l+2,-----
r 0 1r Ifl(k)l2 

'Pl(n) (r') 'P/n ) (r)] 
+2: . (7.8') 

n N n2 

We now add (7.8) and (7.8'), divide by two, and let 
#L -') 00. The ensuing improper integral will converge 
provided her) is square integrable. The result can be 
written in the customary notation of a 0 function 

2fOO 'PI(k,r) 'PI(k,r') 
- dkpl+2 . 
7r 0 I ft(k)i2 

'Pl(n) (r) 'Pl(n) (r') 
+2: o(r-r'). (7.9) 

N n 2 

This proves the completeness of the set of wave func­
tions of the continuous and discrete spectrum and shows 
at the same time what the necessary weight function is. 

The weight function appearing in (7.9) is also defined 
as the spectral function pl(E) in the following sense. 
If we set 

dpl(E) ={::rl+l/lfl(k)!2, E>O, 

dE 2:o(E-En )/Nn2, E5,O, 
n 

(7.10) 

with Pl(-OO)=O, then (7.9) can be written as a 
Stieltjes integral 

At the same time we may now write the resolvent (6.3) 

h2 f 'PI (k',r) 'PI (k',r') 
~h(E; r,r')=- dpl(E') . (7.11) 

2#L E-E' 

On the upper rim of the branch cut we get the outgoing 
wave Green's function @l(+); on the lower rim, the 
incoming wave Green's function @I H . The average of 
the two defines a real (standing wave) Green's function, 
@1(P), for which the Cauchy principal value of the 
integral must be used. 

A comparison of (7.9) with (4.8) shows that we may 
write the completeness in terms of the physical wave 
function 1/;1 

2foo - dk1/;l(k,r)1/;I*(k,r') 
7r 0 

+2: 1/;1(n)(r)1/;I(n)(r')=o(r-r'), (7.9") 
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where !fz(n) (r) are the bound-state wave functions nor­
malized to unity 

!fz(n)(r) = <pz( -iKn , r)/N n. 

The complete Green's function can similarly be written 

@z(k; r,r') 

2foo !fZ (k',r)!fz* (k' ,r') !fz(n) (r)>/;/(n) (r') 
=- dk' +L:-----

7r 0 k2-k'2 n k2+Kn2 

where for real k the limit from above the real axis to 
positive k defines the outgoing wave Green's function, 
and to negative k, the incoming wave Green's function. 

8. GEL'FAND-LEVITAN EQUATIONS 

The equations first derived by Gel'fand and Levi­
tan6l.~2 have a special interest for the solution of the 
problem of going backwards, from a knowledge of the 
phaseshift and bound states to the underlying potential. 
However, they are useful. sometimes also in other 
contexts. 

Consider the function63 

I(E,r)= J dpz(l) (E') <PI(k',r) 

X Irdr' <pz(1) (k',r') <PI (I) (k,r') , (8.1) 
o 

where the quantities with the superscript "1" refer to 
a given potential V(l)(r), and those without superscript, 
to another potential VCr). If we insert (4.19) and (7.10) 
in (8.1) and use (4.1), we obtain 

if Kn refers to the bound states of Vel) (r) and we take k 
slightly off the real axis into the lower half-plane. 
Adding to the integral a similar one over a large semi­
circle in the lower half-plane, we can evaluate it by 
means of Cauchy's residue theorem. The result exactly 
cancels the bound state sum in (8.2). Thus we are left 

.1 I. M. Gel'fand and B. M. Levitan, Doklady Akad. Nauk 
S.S.S.R. 77, 557 (1951). 

02 I. M. Gel'fand and B. M. Levitan, Izvest. Akad. Nauk 
S.S.S.R. 15,309 (1951). 

03 The procedure follows Jost and Kohn.M See also N. Levinson, 
Phys. Rev. 89, 755 (1953). 

MR. Jost and W. Kohn, Kg!. Danske Videnskab. Selskab, 
Mat.-fys. Medd. 27, No.9 (1953). 

with the negative of the integral over the large semi­
circle where we may use the asymptotic functions for 
large k', given by (3.13), (3.17), and (4.16). The result 
is that 

I (E,r) = <pz(k,r)-!<pz(l) (k,r). (8.3) 

The next step is to notice that the completeness proof, 
i.e., the derivation of (7.8), would have gone through 
just as well if <pz(k,r') had been replaced by <pz(l) (k,r'). 
If in the resulting formula we set her) = <PI(l) (k,r) , we get 

X irdr' <Pz(l) (k,r') <pz(1) (k',r'). (8.4) 
o 

The implication of (8.i), (8.3), and (8.4) is that 

<PI (k,r) = <Pl(l) (k,r)+ Irdr'Kz(r,r') <Pz(1) (k,r'), (8.S) 
o 

where 

Equation (8.S) resembles that containing a complete 
Green's function; however, in contrast to the latter, 
Kl(r,r') has the remarkable property of being inde­
pendent of the energy. It obviously satisfies the dif­
ferential equation 

iJ2 [ l(l+ 1)] 
-Kl(r,r')- V(r)+-- Kl(r,r') 
(jr2 r2 

(j2 [ l(l+ 1)] 
=-Kl(r,r')- V(l)(r')+-- Kl(r,r'). 

(jr'2 r'2 
(8.7) 

Inserting (8.S) in the Schrodinger equation and using 
(8.7) readily leads to 

d 
2-Kz(r,r) = V(r)- V(l) (r). (8.8) 
dr 

In addition, Kl satisfies the boundary condition 

Kz(O,r) =0. (8.9) 

If we multiply, finally, (8.S) by <Pz(l) (k,r") and inte­
grate with the weight PI(l)-pt, we obtain the Gel'fand 
Levitan integral equation 

Kl(r,r') = gl(r,r')+ i r 
dr" Kz(r,r")gz(r",r'), (8.10) 

o 
where 

gz(r" ,r') = f d[Pz(l) (E) - pz(E) ] 

X <PI(l) (k,r") <pz(1) (k,r'). (8.11) 
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It can be shownM that (8.10) always has a unique 
solution. A knowledge of the spectral function pI(E) 
thus determines KI(r,r') via (8.10) and (8.11); the func­
tion <PI(k,r) then follows from (8.5), and the potential, 
from (8.8). The spectral function in turn is given by 
(7.10) in terms of the bound state energies and the 
Jost function jl(k), and the latter is given by (5.21) in 
terms of the phase shift and the bound state energies. 
This demonstrates that in general, binding energies and 
scattering phaseshifts are completely independent, and 
that if there are nl bound states, then there exists an nl 
parameter (the N n) family of potentials all of which 
lead to the same phaseshift and to the same binding 
energies. 

A simple application is that in which the difference 
PI(l) - PI is infinitesimal, due to an infinitesimal change 
in the phaseshift.55 In that instance one uses (5.21) and 
(7.11) in (8.6) and finds 

2 00 
K!(r,r') = --f dk'k'oOI(k') 

11"-00 

[ 
t/;/n) (r)t/;/n) (r')] 

X ®z(P) (E' ; r,r') - ".E ---, ---
n E -En 

to first order in the variation ooz(k) of the phaseshift. 
Consequently, by (8.8), 

OVer) 4 d { . [t/;I(n)(r)J2} 
--= --k- ®z(P) (E; 1',1') - L: . 
oOI(k) 11" dr n E-En 

(8.12) 

Specifically, for 1'=0, we have by (6.3), (3.3), and (4.3') 

and therefore 

d 1 
-®I(P)(E; r,r)--"---, 
dr r--+O 2l+ 1 

OV (0)/001 (k) = 4k/1I"(2l+ 1). 

This equation can be integrated immediately 

(8.13) 

V(O)- V(l) (0) = [8/11" (2l+ 1)J .£00 dkk[oz(k)-O/l) (k)J, 
o 

where VCr) and V(l) must have the same bound states. 
Finally we use the Bargmann potentials (Sec. 10) in 
order to construct a potential V(l) with the same bound 
states as V and whose phaseshift is asymptotically 
equal to oz(k), i.e., the value given by (5.1'). The result 
is a simple exact relation between the value of the 
potential at the origin and the lth phaseshift and bound 
state energies En (l) ( <0)00: 

4 {2 00 [ 1 00 ] } V(O)=-- -f dk k01(k)+- r drV(r) - L:E,,(l) , 
2l+1 11" 0 2Jo n 

(8.14) 
55 R. G. Newton, Phys. Rev. 101, 1588 (1956). 

or 

V(O) =_4_{ -~.£oodkk[Mk)+kO/ (k)J- L: En (l) }, 
2l+ 1 11" 0 n 

(8.14') 

the prime indicating differentiation with respect to k. 
This shows that although the phaseshifts of the same 
potential are asymptotically equal for different l values 
and near k=O become smaller as l increases, their first 
moments increase with growing l. 

9. GENERALIZATION TO THE CASE 
WITH COUPLING 

Almost everything done in the preceding sections can 
be generalized to the case in which the potential V1o.Z,.,J 
in (2.9) has off-diagonal elements}6 It is then most 
convenient to write (2.10) in matrix notation suppress­
ing the indices; thus 

where VJ is the square matrix (2.9), L is the diagonal 
matrix of the l values, and \{I J is the square matrix 
\{Izo.I'o,J of (2.6). It may be well to recall the meaning 
of this square matrix: Each column is a solution of 
(9.1), its components indicating the various angular 
momentum components; the columns differ from one 
another by their boundary conditions, e.g., by the 
incoming wave according to (2.8). It is more convenient 
to work with such a square matrix then with the in­
dividual columns. 

The fact that (9.1) has equations of different angular 
momenta coupled together leads to certain complica­
tions owing to the different behavior at 1'= 0 of the 
solutions belonging to different l values. We want to 
introduce a regular solution <i>J(k,r) which would be 
the generalization of <p1(k,r). However, the boundary 
condition (3.3) cannot be generalized in any simple 
way}S It is easier to write down directly the matrix 
integral equation that is to replace (3.7). But unless 
special precautions are taken or else a very strong 
assumption is made concerning the behavior of the 
off-diagonal elements of VJ, the resulting integral 
diverges at 1'=0. This divergence can be eliminated by 
adding a judicious inhomogeneity in the integral equa­
tion. We shall restrict ourselves to the case of s = s' = 1 
with tensor force coupling. The procedure is readily 
generalized to higher spin values. 

56 The content of this section follows Newton and Jost,'7 and· 
Newton,l1 The order of the matrices, however, has been changed. 
Equations in footnote references 17 and 57 have to be read from 
right to left in order to agree with those in this section. 

61 R. G. Newton and R. Jost, Nuovo cimento I, 590 (1955). 
5S A simple example of a square well V J furnishes an illustration; . 

see W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941). If 
one wants to solve the equations by series expansion, even the 
regular solution contains the logarithmic terms of the Fuchs 
theory; d., e.g., E. L. Ince, Ordinary Differential Equations; 
(Longmans, Green and Co., Ltd., New York, 1927), p. 356 ff. 
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If we write 

o ) (9.3) 
gJ+l(k;r,r') , 

with gl(k; r,r') given by (3.6), then we can define a 
regular matrix solution !f>J(k; r) of (9.1) by the integral 
equation 

!f>.r(k,r) = U J(k,r{ 1 + (21 + 1) £r dr'r'-lV TJ(r')] 

+ frdr'[9J(k; r,r')VJ(r')!f>J(k,r') 
o 

where 

( ° 0) VTJ= 
V J_l,J+1J ° 

This integral equation can always be solved by suc­
cessive approximations if the elements of VJ satisfy 
(3.1a); the matrix function !f>J(k,r) has all the regularity 
and reality properties of ((ll(k,r). 

The generalization of the solution II(k,r) is a matrix 
function F J(k,r) defined by the boundary condition 

limeikrF J(k,r) =iL, (9.S) 
,......."" 

or the integral equation 

F J(k,r) = W J(kr) 

- f""dr'9J(k; r,r')VJ(r')FJ(k,r') (9.6) 
r 

with 

(
WJ_l(kr) 

WJ(kr) = 

° 
Under the hypothesis (3.1b) on all elements of the 
potential matrix this integral equation can also always 
be solved by successive approximations. F J(k,r) has all 
the regularity properties of II(k,r). 

The generalized Jost function F J(k) is defined by 
the analog of (4.3) 

F J(k)=:;kLW[F J(k,r),!f>J(k,r) J, (9.7) 

where the Wronskian matrix69 

W[F,!f>J=:;FT!f>' - FT'!f> 

is defined so that it is independent of r if F and !f> both 

69 A superscript liT" indicates the transposed matrix. The sym­
metry of the potential matrix is an important assumption. By 
(2.17) it follows from time reversal invariance of the inter­

.action 1I /. 

solve the same Eq. (9.1). In terms of FJ(k) we have 

!f>J(k,r) = lieF J(k,r)F JT( - k) 
-(-)LFJ(-k,r)FJT(k)Jk-L--l (9.8) 

instead of (4.1). The matrix function FJ(k) has all the 
regularity properties of II(k). 

Comparison of the asymptotic form of (9.8) by (9.5) 
with (2.23) then gives us the S matrix 

SJ(k) =F JT(k)[F JT( -k)J-I. (9.9) 

This can be transformed by using the fact that because 
of the boundary condition 

W[!f>J (k,r) ,!f> J (k,r) J = 0. 

If (9.8) is inserted in this one obtains 

FJ( -k)FJT(k)=F J(k)FJT( -k), 

which shows that (9.9) can also be written 

SJ (k) = [F J(k) J-IF J(k), 

(9.10) 

(9.9') 

at the same time verifying the symmetry of SJ. Since 
F J(k) has the property (4.7) it follows also that SJ is 
unitary. Furthermore,' (9.9') implies that 

(9.11) 

The relation of the physical wave function'll J to !f> J 

is seen by comparing (9.8) with (2.23), together with 
(9.S) and (9.9) : 

'lr J(k,r) = !f>J(k,r)kL+l[F JT( - k) J-I. (9.12) 

This is the analog of (4.8). 
An integral representation for F J(k) can again be 

written down, but it is complicated by the extra in­
homogeneities in (9.4). F J(k) being a matrix, it is not 
related in any direct way to the Fredholm determinant 
of (2.8). 

The bound states can again be obtained from F J(k). 
This time they are those points k=ko in the lower half 
plane where detFJ(ko) =0. Why that is so is most 
easily understood by introducing an auxiliary irregular 
solution I J(k,r), which satisfies 

W[h,!f>JJ= 1, 

W[IJ,hJ=O, 
(9.13) 

and which, for all fixed r=fO, is an entire function of k2,17 
We can then express FJ(k,r) in terms of !f>J(k,r) and 
I J(k,r), 

F J(k,r) =!f>J(k,r)kLF /(k)+I J(k,r)k-LF J(k), (9.14) 

where 
F/(k) = -k-LW[FJ,! J]. 

In contrast to (9.8), (9.14) always holds in the lower 
half of the complex k plane, too. 

Now, if detF J(ko) =0 and Imko<O, then there exists 
a constant vector a so that F J(ko)a=O. Equation (9.14) 
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then shows that 

F J(ko,r)a= iPJ (ko,r)koLF / (ko) a (9.15) 

is a solution regular at the origin and exponentially 
decreasing at infinity; ko2 is thus a discrete eigenvalue 
and F J(ko,r)a is the corresponding eigenfunction. Again 
it follows that ko must lie on the negative imaginary 
axis. Conversely, if k0

2 is a discrete eigenvalue, then 
there must exist a constant vector a so that (9.15) 
holds and hence by (9.14) 

I J(ko,r)ko-LF J(ko)a=O 

identically in r. It then follows from (9.13) that F J(ko)a 
=0 and consequently detFJ(ko) =0. 

The significance of the vector a is shown by (9.15). 
By the boundary condition (9.5) the asymptotic form 
of the bound-state wave function is proportional to 

exp( -[ ko [r)(al' -a2). 

In that sense the ratio of the components of a deter­
mines the mixture of angular momenta that forms a 
bound state. It is always possible that accidentally more 
than one mixture is bound with the same energy; that 
is the degenerate case. In the present instance of only 
two coupled angular momenta it would imply that 
FJ(ko) =0. 

It can be proved17•67 that if detFJ(ko)=O when 
Imko<O, then [FJ(k)]-l has exactly a simple pole at 
k=ko. That statement has no bearing on the question 
of degeneracy. The contrary is true for detF J(k), which 
in the degenerate case has a double zero and hence its 
inverse, a double pole. 

The point k=O is somewhat complicated. For J> 1, 
detF J(O) =0 implies a zero-energy bound state; for 
J = 1 it does so only if [F J(0)]22=0 and k2[F J(k)]12 ~ 0 
as k ~ O. The matrix function k-LF J(k)kL is continuous 
at k=O, and the analog of (4.25) is that 

(9.16) 

always exists and differs from zero if and only if E=O 
is a discrete eigenvalue. 

The argument concerning the finiteness of the number 
of zeros of /I(k) in the lower half-plane can be carried 
over directly to F J(k). Again the result is that the 
number of bound states for a given J is finite if all 
elements of VJ satisfy (3.1). 

At high energies we have the analog of (4.16). 
For Imk:S;O 

lim F J (k)=1 
I kl->oo 

(9.17) 

and consequently, 

lim SJ(k)=1. 
k->±oo 

The statements made in Sees. 4 and 5 concerning the 
high-energy behavior in the upper half of the complex 
plane under stronger assumptions on the potential carry 
over to the present case. 

At low energies one can generalize first of all (5.15). 
If we define 

(9.18) 

then comparison with (2.20) shows that 7)J is the sum 
of the eigenphaseshifts of total angular momentum J 

(9.18') 

One can then show that67 

= { 
71'(nJ+!), if J = 1 and k=O is a resonance, 

71'nJ, otherwise, 
(9.19) 

nJ being the number of bound states of total angular 
momentum J (counted twice in the degenerate case);. 
the resonant case is that in which detF 1(0) = 0 and 
QI=O [see (9.16)]. 

The way in which SJ approaches its zero-energy 
value is found similarly as in the case of no coupling. 
The result is that, provided the (2J+4)-th absolute 
moments of all elements of VJ exist and they are abso­
lutely integrable, the generalization of (5.19) is 

(
0(k2J- 1) o (k2J+I) ) 

SJ(k)-l= as k~O (9.20) 
o (k2J+l) o (k2J+3) 

unless detF J (0) = 0; in the latter case we have 

(
0 (k2J- 3) 0(k2J-I») 

SJ(k)-l= , if J> 1, 
o (k2J- 1) o (k2J+I) 

(
O(k) 0(k3») 

= 0(k3) 0(k3) ,if J = 1, 

(9.20') 

unless we have the "resonance case." 
We may now write down the complete Green's func­

tion which solves 

[ 
d2 L(L+1)] --+ VJ(r)+ k2 @J(k; r,r') 
dr2 r2 

= -o(r-r'). (9.21) 

The arguments leading to its construction are the same 
as in Sec. 6. The result is the analog of (6.3), 

@J(k; r,r') 

= {( - )JiPJ(k,r)kL[F JT( -k)]-IF JT( -k, r'), r<r', 

(- )JF J( -k, r)[F J( -k)]-lkLif>JT(k,r') , r>r', 
(9.22) 

or by (9.12) 

r<r' 

r>r'. 
(9.22') 

The-verification that this is indeed a Green's function> 
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i.e., that it is continuous at r= r' and fulfills the matrix 
version of (6.2) is not completely trivial. It rests on the 
observation that60 

FJ(k,r)FJT(-k, r)-FJ(-k, r)FJT(k,r) =0, 

F / (k,r)F JT (- k, r) - F / (- k, r)F JT (k,r) (9.23) 
= (- )J2ik. 

These equations are proved by introducing an auxiliary 
matrix solution A(k,r) of (2.10), which satisfies the 
boundary condition 

A(k,ro) =0, A' (k,ro) = 1, 

at an arbitrary point ro+O. A can be expressed in terms 
of F J (k,r) and F J ( - k, r), the coefficients being found 
by evaluating the Wronskians. If we then insert the 
boundary condition at ro we obtain (9.23). 

The regularity properties of (f!h are the same as those 
of @l' We can again relate the S matrix to it by solving 
(2.8) : 

'l' J(k,r) = kL+1U J(k,r) 

+ i"'dr'@J(k; r,r')VJ(r')U J(k,r')kL+1 (9.24) 

and then inserting this solution in (2.21) 

SJ (k) = 1-2ikL+i 1'" drU J(k,r)VJ(r)U J(k,r)kL+! 
o 

X@J(k; r,r')VJ(r')U J(k,r')kL+!. (9.25) 

The completeness of the eigenfunction of (9.1) is 
proved17 •67 by the same method as in Sec. 7 for a single 
equation. The result is that (7.9') is replaced by 

f <I>J(E,r)dP J(E)<I>JT(E,r') = o(r-r'), (9.26) 

where the spectral function is given by 

with P J( - 00) =0. P J(E) is a real, symmetric, positive 
semidefinite matrix function of E. The matrices Cn are 
real symmetric, positive semidefinite, and in general 
singular, with the property 

Cn = fOOdrCn<I>Jcn)T(r)<I>Jcn) (r)Cn, 
o 

60 Notice the position of the transposed functions. These are 
not Wronskians and their constancy is not a simple consequence 
of the differential equation. 

where 
<I>J(n) (r) =<I>J( -iKn, r). 

We can always write 
Cn =an2Bn, 

where an is a real number and B n, a real symmetric 
projection61 : 

Bn=bnXbn 

in terms of the "vector" 

We also define a vector 

I/;J(n) (r) =an(l +~n2)-i 
X [<I> J11 en) (r) +~n<I> J12 en) (r),<I> J2l en) (r) +~n<I> J22 (n) (r) ] 

with the property 

i'" dr\I/;J(nl (r) [2= 1, 

which follows from (9.28). With these definitions we 
have 

<I>J(n) (r)Cn<I>/n)T(r') = I/;J(n) (r) XI/;J(n) (r'). 

The completeness (9.26) thus can also be written in 
terms of the physical wave function and normalized 
bound-state wave functions: 

2["" - dk'l' J(k,r)'l' Jt(k,r') 
7r 0 +L: I/;J(n) (r)XI/;/n) (r')=o(r-r'). (9.26') 

or 

Similarly, for the complete Green's function 

. , _ h2 J<I>J(E"r)dP J(E')<I>JT(E',r) 
@J(E,r,r)- , 

2/L E-E' 

1f'" dk' 'l' J(k',r)'l' Jt(k',r') 
@J(k' r r')=-

" 7r -00 k' . k- k' 

(9.29) 

The Gel'fand Levitan equations can be generalized 
to the case with coupling in a straight forward manner. 67 

The result is that (8.5)-(8.7), and (8.11) are replaced by 

<I>J(k,r) = <I>J(1) (k,r)+ £"" dr'KJ(r,r')<I>J(1) (k,r'), (9.30) 

61 The cross denotes a direct product: Bi;=b.b;. 
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a2 [L(L+l)] 
=-KJ(r,r')-KAr,r') V(l)J(r')+ , (9.32) 

ar'2 r'2 

gJ(r,r') = f <liJ(l) (k,r) 

Xd[P J(l)(E)- P J(E)]<li/1)T(k,r'), (9.33) 

while (8.8) to (8.10) retain the same form as before. 
The potential matrix VJ is thus determined from the 

spectral function P J (E) in the same manner as in the 
case of no coupling. However, it is now no longer so 
simple to infer the generalized J ost function F J (k) and 
thus P J(E) from SJ (k) and the hound states. The pro­
cedure leading to (5.21) cannot be generalized, the 
logarithm of a matrix not being well defined. 52 The 
problem was solved by Newton and Jost07 with the 
result that, in contrast to the case of no coupling, not 
all matrix functions SJ(k) admit of a splitup (9.9') 
with F J(k') having all the required properties. No 
simple way is known to determine whether or not a 
given SJ(k) leads to an FJ(k), except to solve the 
integral equation of footnote reference 57 in order to 
find F J • 

10. EXAMPLES 

Ca) Square Well 

In the simple case of a square well 63 one readily finds 
that the Jost function is 

jl(k) = (k/ K) ![wI(kro)uz' (Kro) 
- (k/K)uI(Kro)wz'(kro)], (10.1) 

where ro iii the radius of the potential of strength V 0, 

K2=k2 - Yo, and the prime indicates differentiation 
with respect to the argument of the function. In the 
case l=O we have 

joCk) = (roK)-le- ikTo sin (Kro)g( -ikro), 

where, with 

z= -ikro, Z02= -r02Vo, t'2=Z02_Z2= (e+i1])2, 

we write 
g(z) = r cotr-z. 

The zeros of JoCk) are found from those of g(z). The real 
roots with Z<Zo are determined by the intersection of 
the two curves 

62 It is not known whether F J(k) is diagonalizable or, if it is, 
whether its eigenvalues and diagonalizing matrix separately are 
analytic functions. 

63 This case was treated in great detail by Nussenzweig.64 The 
procedure below is similar to his. 

64 H. M. Nussenzweig, Nuclear Phys. 3, 499 (1959). 

shown in Fig. 1 with some intersections for Z02>0, i.e., 
an attractive potential. An intersection for negative :Ii 

means a negative imaginary root of JoCk) and hence, a 
bound state. Such a root evidently exists whenever 
zo>!1I'. When 1 <zo<!1I', then there is an intersection 
for positive z, i.e., a positive imaginary root of JoCk). 
We then have a "virtual bound state." When zo< 1 
then we must replace ~ by i1] and the curves become 

Z=1] coth1], z= (Z02+1]2)i. 

The intersection keeps moving up and there is always 
a virtual bound state. 

For Z02 <0 (i.e., a repUlsive potential), there is obvi­
ously no intersection and we never have a virtual 
bound state. 

The complex zeros of joCk) are obtained from those 
roots of 

H(z)=g(z)g( -z) =csc2r(r-zo sinr) (r+zo sinr)=h(r), 

which lie in the right half of the complex z plane. A 
zero ro of her) must satisfy the equations 

~o cot~o = 1]0 coth1]o 

~o= ±Zo sin~o cosh1]o 

if the potential is attractive, or 

~o tan~o= -110 tanh1]O 

1]0= ±Zo sin~o cosh1]o 

if it is repulsive. They can be shown to have infinitely 
many solutions. 64 

(b) Zero-Range Potential 

The case of a potential of zero range is included here 
only for the sake of cautioning the unwary. If the 
potential vanishes identically for r> R then the wave 
function in the outside region is determined by assign­
ing it at r=R a given logarithmic derivative c which 
becomes less and less energy dependent the shorter the 
potential range R. In the limit as R - 0, then, the 

t 
z 

-1 i---7"=----¥---f---tt--f-----1 

Fro. 1. Bound and 
virtual bound states in 
a square well; Z= -ikro, 
Zo'= -ro2Vo. The z co­
ordinate of the inter­
section of the curve z 
=~ cot~ with the circle 
z'+e=zo' gives the en­
ergy of the bound state, 
if negative, or of the 
virtual bound state, if 
positive. 
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potential is replaced by the boundary condition65 

lim<p'(k,r)/ <p(k,r) =c, 
r->O 

while (3.3) is discarded. The function j(k,r) is in this 
case simply the free function e-ikr and from (4.3) [Eq. 
(4.3') no longer holds], 

j(k)=c+ik. 

This function vanishes at k= ic so that if c is negative, 
then there is a bound state of energy -1t2C2/2p., and if 
c is positive, then there is a virtual bound state. Notice 
that (4.16) is now no longer true. 

The S matrix is 

S(k) = (c+ik)/(c-ik), (10.2) 

so that S( 00) = -1. The Levinson theorem (5.15) is 
also violated since now 

o(O)-o( ac) = ±t1l". (10.3) 

depending on the sign of c. The explanation66 of this 
fact is that the limit of zero range is not uniform in k, 
as can be seen explicitly by writing 

tano= (k cotkR-c)/(k+c cotkR). 

If we let k ~ 00 then we know that for fixed R, c 
approaches its free value k cotkR, and hence tano ~ OJ 
we may subsequently let R ---t 0 and get no change. But 
if we let R ~ 0 with c fixed, we get 

tano=k/c 

and c is independent of k. If we now let k ---t 00 we get 
the anomalous value tano= 00 • 

(c) Repulsive Core 

If the potential is positive infinite for r<Rc, then 
the boundary condition (3.3) is replaced by 

<PI (k,Rc) = 0, 

<Pi' (k,Rc) 1, 

for each l. The solution j/(k,r) is completely unaware of 
the core for r> Re. The analyticity properties are thus 
quite unchanged. The Jost function is given by (4.3), 
but instead of (4.3'), we get 

jl(k) = kljICk,Re), 

and hence by (3.17), as Ikl-? 00 in the lower half­
plane or on the real axis, 

jz(k) = (ik) le-ikRc+o(kZevRc). 

The S matrix is 

65 This works only for l=O. 
66 This remark is due to R. E. Peierls; private communication. 

Thus as I k I -? 00 for real k 

Oz(k)",-kRc+!1I"1+o(1). 

In other words, the phaseshift no longer tends to a 
multiple of 211" at high energies, but instead keeps in­
creasing linearly. 

The S matrix elements of the first three angular 
momenta for a pure repUlsive core are 

SoCk) = exp( - 2ikRc), 

k-iRc-1 

SICk) = -exp( - 2ikRc) '---. 
k+iRc (10.4) 

(kRe)2-3ikRc-3 
S2(k)=exp( -2ikRc)' • 

. (kR c)2+3ikRe-3 

Whereas for l=O, Sz is an entire function, for 1:2:1 it 
has poles in the lower half-plane, i.e., on the second 
sheet of the Riemann surface as a function of the energy. 

Although the Levinson theorem (5.15) is not true 
when a repulsive core is present, one can prove a 
similar theorem for the difference between the actual 
phaseshift and the pure core phaseshift for the same 
core radius. 

(d) Exponential Potential 

If the potential has the form 

V(r) = - Voe-rla, 

then the s wave radial equation is explicitly solvable 
by setting x=e-rla. The result is that12 ,67,68 

jo(k,r) = exp[ - iak log (a2 Vo) ] 
Xr(1+2iak)hiak(2aVole-r/2a) (to.5) 

and the Jost function 

jo(k)=exp[ -iak log(a2Vo)] 
xr(1+2iak)J2iak(2aVo'i). (10.6) 

The points where 
J 2iak (2aVol) = 0 

determine the bound states (for Imko<O) and the 
virtual states as well as the "resonances."69 

The function JoCk) has infinitely many simple poles 
on the positive imaginary axis because of the gamma 
function. They occur at k=in/2a for all positive in­
tegers n. There is the exceptional possibility that 
E= -1t2n2/8a2p. is the energy of a bound state. Since 
L .. (z)=(_)nJ,,(z) the Bessel function then vanishes 
at the same point where the gamma function has a 
pole. In that case JoCk) does not have a pole at k= in/2a; 

61 H. A. Bethe and R. Bacher, Revs. Modem Phys. 8, 111 
(1936). 

68 S. T. Ma, Phys. Rev. 69, 668 (1946). 
00 It follows incidentally that J.(z) can have no real zeros for 

Rev>O unless Imp=O. This does not appear to be a known prop­
erty of Bessel fUllctions. 
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but since it still has a zero at k= -in/2a, the S matrix 
still retains its pole. 

It may be expected from the structure of jo(k,r) for 
the pure exponential potential that the appearance of 
poles in joCk) at k= in/2a for positive integers n is a 
general feature of potentials whose asymptotic tail is 
proportional to e-r/ a• This has indeed been demonstrated 
recently by Peierls.70 

(e) Yukawa-Type Potentials 

Suppose that the potential can be written in the form 

V(r)= Vof dap(a)e-ar, (10.7) 

where p(a)=O for a<p., p.>0.71 A special case is the 
Yukawa potential, obtained by setting pea) = const. for 
a>p.. We shall examine the implications of the fore­
going form of V for 1=0 only.12,15,26,70,72 

If we write 
g(k,r) == jo(k,r)eikr, 

then the integral equation (3.8) becomes for the 
potential (10.7) 

g(k,r) = 1+ (Vo/2ik) f dap(a) f oodr' 
o 

x (1-e-2ikr')e-a(T+r')g(k, r+r'), 

and the Jost function is 

joCk) = g(k,O). 

We solve the integral equation by iteration 
00 

g(k,r) = L gn(k,r), 
n9l 

and easily find that 

(10.8) 

It is clear from this that in general jo(k,r) will have a 
branch cut along the positive imaginary axis starting 
at k=!ip. and running to infinity. Moreover, if we 
assume that pea) is bounded 

[pea) [~M, 

70 R. E. Peierls, Proc. Roy. Soc. (London) A253, 16 (1959). 
71 This is a very strong assumption, since it implies not only 

that (3.14) holds for any a<!J', but also that VCr) is an analytic 
function of l' regular in the open right half of the complex plane. 

72 For explicit extension to 1>0, see A. Martin, Nuovo cimento 
15, 99 (1960); and D. I. Fivel and A. Klein, preprint. 

then jo(k,r) is a regular analytic function in the entire 
k plane, except for the cut; at k=!ip. it has a loga­
rithmic singularity (unless p(p.) =0), while everywhere 
else on the cut it is continuous. It is readily seen from 
the foregoing that if k remains a finite distance away 
from the cut, i.e., if 

[Rek [ :2: E if Imk:2: !p.- E, 

then 
[gn(k,r) I ~ (McVo/p.)n/n! 

uniformly in k and r. Hence the series converges abso­
lutely and uniformly. Similarly one establishes the 
existence of the derivative and thus the analyticity of 
jo(k,r) and joCk) everywhere, except on the cut. 

If we define functions h,,(a,k,r) by the recursion 

ho(a,k,r) = e-aT 

f
OO da' pea' -a) 

hn(a,k,r) = Vo hn_1(a',k,r) , 
a+1' a' ex' + 2ik 

then 

and 

h(a,k,r) = L hn(a,k,r) 
n9l 

converges absolutely and uniformly so long as k stays 
at least a fixed distance away from the cut which runs 
from k=!i(a+p.) upwards. The function h(a,k,r) satis­
fies the integral equation 

f
oo da' p(a'-a) 

h(a,k,r)=c--'''+ Vo _. h(a',k,r), 
a+1' a' a' + 2ik 

(10.9) 

which determines h(a,k,r) explicitly in terms of h(a',k,r) 
for a':2:a+p.. For 

we find 

Vop(p.) (a+p.) 
h(a,k,r)=--h(a+p., k,r) log - +0(1). (10.10) 

a+p. E 

Since 

f
OO da pea) 

jo(k)=1+Vo ---h(a,k,O), 
I' a a+2ik 

we have 
limjo(k)=1 

I kl-+oo 

everywhere in the complex plane. Consequently, the S 
matrix is an analytic function of k, regular in the 
complex plane cut along the positive imaginary axis 
from k=!ip. to infinity, continuous on the cut, except 
near the point k=!ip., where it is O[log(2ik+p.)]. 
Furthermore, 

limSo(k)=l. 
I kl->oo 

One may then use Cauchy's theorem to express the real 
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part of So (for real k) in terms of its imaginary part, 
bound state contributions, and an integral over the 
cut along the positive imaginary axis. l • Because of the 
last contribution such a dispersion relation is not very 
useful. 

(f) Generalized Bargmann Potentials 

Suppose we are given an arbitrary potential V(O)(r) 
and the corresponding functions <p/O) (k,r) , 11(0)(k,r) 
and jl(O) (k). This potential need not satisfy (3.1), but 
we take it so that, except for isolated singularities 
11(0) (k) possesses an analytic extension into the upper 
half plane. In fact V(O) (r) may even be the Coulomb 
potential; in that case (3.4) is replaced by73 

lim expi[kr-71k-1 logr J10(0) (k,r) = il. 
r->co 

We want to write74 down the potential .6. VCr) which, 
if added to V(O) (r), causes a new SI(k) that differs 
from the old by a finite number of poles and zeros 

We then define N functions KII(r) by the N equations76 

:Ell x-rll(r)KII(r) = - jz<0)( --y, r), 

:Ell X.II (r)KII (r) = - 11(0) (K,T)+i1C.<Pl(0) (K,r). 

The claim is that when 

(10.18) 

(10.19) 

is added to V(O) (r), it produces the SI(k) of (10.11) and, 
furthermore, there are bound states of energies -h2K2/2/L 
in addition to those of VCr). 

A few steps of simple algebra show that the functions 

h(k,r);:. jl(O) (k,r)+:E1I KfJ(r)xfJ(k,r) , (10.20) 

g(k,r);:. <PI(O) (k,r) + :EfJ KfJ(r)YfJ(k,r), (10.21) 

satisfy the differential equations 

-h"+[l(l+ 1)r-2+ V(O) +.6. V -k2Jh 
=:EfJ PfJ(r)xfJ(k,r), (10.22) 

SI(k)=SI(O) (k)R(k)/R( -k), (10.11) -g"+[l(l+ 1)r-2+ V(O) +.6. V -k2Jg 

where R(k) is a rational function with N simple poles at 
k=~n(Im~n>O) and N simple zeros at k=a.,., and which 
tends to one at infinity76: 

R(k)= n[(k-a)/ (k-mJ. (10.12) 

Among the a's we distinguish between those in the 
upper half-plane, which we call -y, Im-y>O, and those in 
the lower, which we call K, ImK<O. 

We now form the functions 

xfj(k,r);:. (~2_ k2)-IW[ <PI (0) ~,r),jz(O) (k,r)J, (10.13) 

yfj(k,r)~ (~2_ k2)-IW[ <Pz(O) (~,r),<pz(O) (k,r)J, (10.14) 

{x-rfJ(r)~XfJ( --y, r) 
(10.15) 

x.lI(r) ==xtJ(K,r)-i1C.YfJ(K,r), 

where C. are a set of arbitrary real constants. 
Notice that we can also write 

xfJ(k,r) = IT dr' <p/O) ((3,r')jl(O) (k,r') 

° 
+(k2_~2)-111(O)(k), (10.16) 

YfJ(k,r) = iT dr' <PI (0) (~,r') <,01(0) (k,r'). 
o 

(10.17) 

= LfJ PII(r)YfJ(k,r), (10.23) 
where 

pfj(r) = - Kp" +[l(l+ 1)r-2+ V(O)+.6. V -~2JKfJ' (10.24) 

Now by the definitions (10.15) and (10.18) we have 

h( --y, r)~O, h(K,r)~iIC.g(K,r), (10.25) 

insertion of which in (10.22) implies by (10.23) that 

LtJ xafJ(r)pfJ(r) =0 

for all a. We may conclude that76 pfj(r) =0 for all~. The 
functions hand g thus both satisfy the SchrOdinger 
equation with the new potential V = V(O) +.6. V. 

Next we look at the boundary values. As r --? 00 it 
is readily seen that 

xll(k,r)'" -t( - )I(k+~)-Ijz<0) (_~)e-i(kH)T, 

YII(K,T)"'l-iK-I-I(~-K)-ljl(O) (K)jz<°) (_~)e-i(II-')T. 

The equations for KtJ (r) , (10.18), thus become for 
large r 

from which it follows that there exists a set of lV con­
stants afJ such that 

limjz<°)( -me-itJTKfJ(r) = -2i-1atJ (10.26) 
r-->CO 

and 
73'1/ = JJCZZ' a/h, where p. is the reduced mass, Z and Z' are the 1 '" ( (.I) I 0 

two charges in units of the electronic charge, a is the fine structure - L..."tJ a-I-' - all= . (10.27) 
constant "1/137," and c is the velocity of light. 

74 The treatment below is a generalization of that of W. R. We may immediately infer that 
Theis, Z. Naturforsch. 11a, 889 (1956), to include bound states. 
One may obtain these potentials also by solving the Gel'fand R(k)=l-LtJ(k-m-IatJ, 
Levitan equation, a procedure due to Bargmann, unpublished. 

76 We use a simplified notation such as 1:ff to indicate a sum 
over the (3n from 1 to N. 76 It is clear that det[xaff(r)JJii'O. 

(10.28) 
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both sides being rational functions of k with the same 
zeros and poles and the same limit as 1 k 1 -+ <Xl. 

The asymptotic behavior of the function h(k,r) of 
(10.20) for large r is now easily seen to be 

h(k,r) ,,-,i1e-ikrR( -k), 

which proves that 

li(k,r) = h(k,r)/ R( - k). (10.29) 

The function g(k,r) of (10.21) is a regular solution of 
(2.10). From (10.21), (4.1), and (10.29) we see that 

g(k,r) = !ik-HUI(O) ( -k)RC -k)liCk,r) 
- (- )IN°) (k)R(k)jz( -k, r)]. (10.30) 

It follows that SI(k) is indeed given by (10.11). More­
over, by (10.25) and (10.29), 

(HUt) 

both sides being regular at r=O and decreasing ex­
ponentially at infinity; K is thus indeed a bound state. 
Since for given zeros of jl(k) in the lower half-plane 
(4.5) and (4.16) define /l(k) uniquely [see (5.21')J, 
we may conclude from (10.11) that 

jl(k) = N°) (k)R(k), 

and hence from (10.30) and (4.1) 

'PI (k,r) = g(k,r). 

(10.32) 

(10.33) 

We can also evaluate the normalization integral of 
'PI (K,r). If we use the equations between (7.3) and 
(7.4). we get 

N.2= fCoOdrl 101 (K,r) 12 

° . _ TT",;o<.(a2+ IKI2) HO)(K) 
= (1K) ~~ .--. (10.34) 

II~(i32+ 1 K 12) C. 

The potential .1 V can be written in a somewhat 
simpler form. If we solve the set of Eqs. (10.18), 

K~(r) = - L:"[x-l(r)]~,,U '" (I) (r), (10.35) 
where 

U'Y (I) (r) =. j/O) (-"I, r) 

U < (I) (r) =. j/O) (K,r) - ilC <101(0) (K,r) , 
(10.36) 

then we can write (10.19), 

.1 VCr) = - 2 (d2/dr2) log det[x",i(r)J, (10.37) 

since it follows from (10.16) and (10.17) that 

U" (l) (r) 10/°) (i3,r) = (d/dr)x"',i(r). 

To summarize then, the potential V = V(O)+.1 V, 
where .1 V is given by (10.37), produces the functions 
101(k,r) and jl(k,r) given by (10.33) and (10.29), bound 
states of energy 'hh2/2J.l. with wave functions IOI(K,r) 

whose normalization is given by (10.34), and the S 
matrix element (10.11), or 

k-'Y k+S k-K 
SI(k)=SI(O)(k) II -.-.-. (10.11') 

k+'Y k-{3 k+K 

We are free to choose a "I equal to a -K. In that case SI 
contains no pole and no zero because of the bound state. 
The potential .1 V is real if we choose the ..,.'s and {3's 
either purely imaginary or else in pairs symmetric with 
respect to the imaginary axis, and the K'S purely 
imaginary. The SI of (10.11) is then unitary (if SI(O) 
is). But one may also relax these requirements and 
make .1 V complex as an "optical" potential in order to 
simulate absorption. 

If we choose V(O)=.O then we get the Bargmann po­
tentials,77 which lead to a rational SI(k). They are often 
very useful for the construction of simple models. A 
potential which leads to a rational SI(k) for one l=lo 
will in general not lead to a rational SI(k) for 1=f=10. 
Since for 1=0 the functions that enter in V (r) are all 
exponentials (multiplied by sines and cosines if we 
choose complex (3's and 'Y's), the Bargmann potentials 
for the S-wave have in general exponential tails. 78 This 
shows that an exponential asymptotic form of the 
potential does not necessarily lead to infinitely many 
poles of SI in the upper half-plane, although it does in 
general.~ 

If 1=f=0 then the functions entering the Bargmann 
potentials are spherical Bessel functions and thus they 
contain inverse powers of r. As a result, they generally 
have asymptotic tails r-n , where n 2: 3. It has been 
shownso that a sufficient condition for a Bargmann 
potential to have an exponential tail is that jl(k) 
= jl(O) +O(k21) as k -+ o. 

We may look at some special cases. If we take one 
'Y=ia, one (3=ib, V(O)=O, and l=O,77 

jo(k) = (k-ia)/(k-ib), 
or 

k cott50=[ab/(b-a)]+[k2/(b-a)], b2:0, a;::::O, (10.38) 

then the effective range approximation is exact. The 
potential that produces this phaseshift is 

8b2 [ebr e-br ]-2 
V(r)=--- --+- . 

b2-a2 b-a b+a 
(10.39) 

If we set a = 0 then we get a zero-energy resonance 
(jo(O) =0) 

tanoo=b/k; 

the potential that produces it is 

V(r) = -2b2 sech2br. 

77 V. Bargmann, Revs. Modern Phys. 21, 488 (1949). 
78 In special cases they may not, as will be seen below. 
79 See end of Sec. lO(d) and Peierls.70 
80 By T. Fulton (unpublished) and Newton. 55 
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On the other hand, if we set b=O then the phaseshift 
becomes 

tanoo= -a/k. 

Since then 00 (0) - 00 ( ao ) = - t7l", the Levinson theorem 
(5.15) is violated. The potential that produces this 
phaseshift is 

V (r) = 2a2(1 +ar)-2. 

Notice that in this case, which violates (3.1), the Jost 
function has a pole at k=O. 

We can also make the effective range approximation 
exact with a bound state. A case of interest is the deu­
teron. The phaseshift has the form (10.38) with a 
replaced by.K, the binding energy being ft2K2/2p.. The 
potentials that produce that phaseshift and bound 
state are8l 

where 

gc(k,r) = k-I[e-kr+c sinhkr]' 

The normalized bound state wave function is 

(10.40) 

( 

CK ) ! sinhbr 
q,(r)=2 -- . (10.41) 

b2-K2 gc(K+b,r)-gc(K-b,r) 

The potentials (10.40) have asymptotic tails propor­
tional to e-2.r, except when c= -4, in which case it 
decreases more rapidly. 82 

8' R. G. Newton, Phys. Rev. 105, 763 (1957). 
82 It is a general property of the potentials producing a given 

phaseshift and given bound states of smallest binding energy 
1i2K,2/2,. and largest binding energy 1i2K22/2,. that, if one of them 
decreases asymptotically more rapidly than exp( -2K2r) then it 
is the only one with that property, and if one of them decreases 
less rapidly than exp(-2K,r) then they all do; d. Newton. 55 

An amusing case is the one for which So(k)=l, i.e., 
which causes no s wave scattering whatever, at any 
energy, but which causes a bound state of zero energy. 
The potentials that do that are77,sa 

V(r)= -6 (d/dr)[r2/(c2+r3)]' 

The normalized bound state wave function84 is 

while 

Jo(k,r) = e-ikr_ [3rk-2/ (c2+r3)J[ikre-ikr+e-ikr_1]. 

The Levinson theorem (5.15) is again not fulfilled. One 
can similarly find the potential for which 

Jo(k) = 1 +K2/k2, 

and which therefore has a bound state of binding energy 
ft2K2/2p., but which causes no s scattering. This poten­
tial, however, has infinitely many singularities on the 
real axis. sa 

We can also use the preceding procedure to write 
down the potentials with a hard core or a Coulomb 
contribution but whose S matrix differs, for one I value, 
from that for a pure hard core or pure Coulomb field 
by a rational factor. The construction of such examples 
is left as an exercise to the reader. 

The Bargmann potentials have been generalized by 
Fulton and Newton8b to the case with coupling between 
two angular momenta. The resulting potentials con­
stitute the only tensor forces for which the Schrodinger 
equation is known to have a solution in closed form. 
They have been applied to the case of low-energy 
neu tron-proton scattering. 86 

83 H. E. Moses and S. F. Tuan, Nuovo cimento 13, 197 (1959). 
84 This shows that when (3.1) is violated then there can be a 

bound state of l=O with zero binding energy; when (3.1) is satis­
fied, that is impossible. 

8. T. Fulton and R. G. Newton, Nuovo cimento 3, 677 (1956). 
86 R. G. Newton and T. Fulton, Phys. Rev. 107, 1103 (1957). 
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