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The structure of the expectation values of retarded multiple commutators (r functions) is analyzed in
terms of the number of particles in the decomposition of absorptive parts. As to the one-particle structure, it
is found that an r function is a sum of a finite number of terms, each of them except one (that one being
called one-particle irreducible) being in momentum space a product of one-particle irreducible factors,
linked by one-particle propagation functions. As to the two-particle structure, it is found that a one-particle
irreducible function is the solution of an inhomogeneous Bethe-Salpeter equation, whose kernel and inhomo-
geneous term both are two-particle irreducible functions. This structure, which could be generalized to
higher particle numbers, closely resembles perturbation theory but is here derived from locality and the
asymptotic condition alone, by converting the nonlinear system of integral equations for 7 functions stepwise
into one in which neither one- or two-particle reducible functions, nor one- or two-particle intermediate states
appear. The implication of such structure analysis for an interpretation of perturbation theory, improve-
ments of present methods to derive analytic properties of scattering amplitudes, and a formalism with
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unstable particles are discussed, and the strength of singularities of various functions investigated.

INTRODUCTION

XIOMATIC quantum field theory consists in
studying the consequences for observable quanti-
ties of locality, which means that the commutator (or
anticommutator) of any two local quantities, like field
operators, should vanish at spacelike distances. It is well
known that the most convenient objects to analyze are
the vacuum expectation values of certain infinite sets of
operator products: unordered products, giving rise to
w functions!; time-ordered products, giving rise to =
functions?; and retarded multiple commutators, giving
rise to r functions.?

The axioms of the theory, notably relativistic in-
variance, locality, and the existence of discrete eigen-
states of the energy-momentum-squared operator, imply
certain properties of those functions. Firstly, there are
properties expressible for each function separately,

* On leave of absence from Max-Planck-Institut fiir Physik,
Miinchen, Germany. Present address: Physics Department, Stan-
ford University, Stanford, California.

1 A. S. Wightman, Phys. Rev. 101, 860 (1936).

2 See e.g., H. Lehmann, K. Symanzik, and W. Zimmermann,
Nuovo cimento 1, 205 (1955).

3See e.g., H. Lehmann, K. Symanzik, and W. Zimmermann,
Nuovo cimento 6, 319 (1957).

mainly deduced from relativistic invariance and locality,
and secondly, properties that relate all those functions
together. Of this latter type are the positive definiteness
condition for w functions! and the infinite systems of
coupled nonlinear integral equations for 72 and 7 func-
tions,* where specific properties of the state space of the
theory are explicitly used.

A great deal of work has recently been done on the
first-mentioned “linear” properties. However, it has
been shown by Jost’ that the linear conditions are not
sufficient to establish analyticity of the meson-nucleon
vertex function in the cut energy-plane. On the other
hand, it is known that the nonlinear conditions are im-
portant in proofs of dispersion relations for scattering
amplitudes. Thus, it seems to be desirable to find out
generally what kind of properties of the invariant func-
tions these conditions imply, a ‘question that has re-
ceived comparatively little attention.

It will be shown that the nonlinear conditions de-
termine the many-particle structure of the functions in

4V. Glaser, H. Lehmann, and W. Zimmermann, Nuovo cimento
6, 1122 (1957); K. Nishijima, Progr. Theoret. Phys. 17, 765

(1957).
8R. Jost, Helv. Phys. Acta 31, 263 (1958).
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question. Here the r functions are the most convenient
ones since their nonlinear system of integral equations
is simplest. This is because, in contrast to = functions,
for r functions the locality condition is a linear one: the
r functions are to be invariant retarded functions. The
nonlinear conditions merely express the absorptive part
of an 7 function as a sum of bilinear terms arising from
various intermediate states, the number of particles in
those states usually ranging from one to infinity. Ac-
cording to this decomposition of the absorptive parts,
the r functions have several types of singularities in
momentum space: delta-function-like ones from one-
particle intermediate states and discontinuities of the
derivatives at the thresholds of many-particle con-
tributions.

To understand the structure of r functions in view of
these singularities, one starts best from perturbation
theory. This is because the renormalized perturbation

theoretical expansion of the r functions is a formal solu- -

tion of the axiomatic scheme and, actually, the only
form of a solution we know at present. Moreover, if one
sets out with the aim of finding a formal solution of the
scheme as a power series expansion in a perturbation
parameter (or set of parameters) one is uniquely led® to
the renormalized perturbation theoretical expansions
compatible with the assumed types of stable particles.
Therefore we start, short of something better, from per-
turbation theory and try to find out those of its features
that render it a solution, though a formal one, of the
nonlinear system as particularized in the foregoing.

A perturbation theoretical contribution to an 7 func-
tion is described by a double graph.” The skeleton of
such a graph is the same as that of a Feynman graph.
However, there is one distinguished vertex (the latest
one) and the lines in the graph do not stand for Ar but
for Arey and A; functions. In such a graph one can per-
form partial summations, as is well known for Feynman
graphs as well as for the graphs of the nuclear many-
body problem. What we call structure of a graph is the
circumstance that there might be one line, or pair of
lines, that is the only connection between otherwise dis-
connected parts of that graph, both parts in themselves
having again the skeleton of a most general double
graph. There may be, of course, several graph parts that
are connected with one another by such simple links.

If no restriction is imposed on the number of legs a
vertex in the graph may have and, of course, no re-
striction on the number of vertices, the structure just
described is the most general property that can be
abstracted from perturbation theory (apart from the
permissible singularities of # functions, which will be
discussed later). This structure is exhibited in closed
form by requiring the r functions to be solutions of
inhomogeneous Bethe-Salpeter equations, where both

¢ R. Haag, Kgl. Danske Videnskab. Selskab, Mat. fys. Medd.
29, 12 (1955). The question of renormalization was cleared up in
the paper cited in footnote 2.

7F. J. Dyson, Phys. Rev. 82, 428 (1951).
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the kernels and the inhomogeneous terms are irreducible
in the sense that their absorptive parts do not have
contributions from one, or two, particle intermediate
states. This structure is verified by inserting it into the
nonlinear system of integral equations, whereupon all
one- and two-particle singularities (or reducibilities)
drop out and the properties of kernels and inhomogene-
ous terms just mentioned are manifested.” The key to
this phenomenon is the fact explained before, namely
that the perturbation theoretical solution, whose struc-
ture was taken as a guide, is a formal solution of the
nonlinear system. Actually, we shall show that the
ansatz chosen by us does not imply a loss of generality
at the beginning.

The implication of these findings is two-fold. Firstly,
they lead to a new interpretation of perturbation theory
as a degenerate form of structure analysis, since irre-
ducibility of vertices, or absence of intermediate states
of low mass, means decreased extension in space-time.
Secondly, they can be exploited to enlarge the analyticity
region of scattering amplitudes, or to prove such
analyticity for up to now excluded mass ratios, or pos-
sibly, to find new analytic properties for which the
nonlinear conditions are crucial.

One feature of renormalizable perturbation theory not
taken into account is the estimate of the strength of
singularities, or growth at infinity in momentum space,
of each single term of the expansion. In accordance with
our earlier admitting ‘““‘unrenormalizable” vertices, we
believe perturbation theory not to be indicative here,
and actually to be too generous, as is already known for
special cases,® and we shall collect arguments for that
opinion. Further study of the consistency of the suitably
reduced nonlinear system should give an answer to this
question as well to others that arise from the, in com-
parison with perturbation theory, here widened view-
point.

In the first part generalized retarded functions are
introduced as formal tools for later use.

In the second part the one-particle singularities of
retarded functions are studied in some detail, mainly to
display the method used in the more complicated analy-
sis of two-particle singularities in the third part, details
of which are deferred to an appendix.

In the fourth part these results are generalized to
higher singularities, and their implications for an in-
terpretation of perturbation theory are discussed.

The strength of singularities of propagation and
vertex functions is discussed in the fifth part, with an
appendix containing calculational details.

The final part gives an outlook on possible applica-
tions of the formalism to the specific problem of analytic
continuation of scattering amplitudes. These applica-

7 At this point our proof is not yet complete, though a very
indicative result is obtained.

8 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
cimento 2, 425 (1955).
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tions will be dealt with further in a later paper. Also it is
shown what meaning the concept, or use, of unstable
particles may have in the present scheme.

1. GENERALIZED RETARDED FUNCTIONS

We shall discuss in nearly all of the following a theory
with one hermitian scalar field A (x), obeying

and one kind of neutral spinless particles only. The
extension of all results to more realistic cases is straight-
forward.

A convenient tool to handle infinite sets of functions
or operators are generating functionals. They are gener-
ally not supposed to exist in any other than a formal
sense, provided each function or operator of that infinite
set exists. The generating functional of time ordered
operator products

Ty )= 8(x1—x5) - -0(xn_1—xn)

perm
XA(x): - Ax,) (2)
is the operator

@ ,in
TV =1 — dl...dnT 1'%
=1+ = [ fan - an )
X (w1)- - T (wa), (3)

where J (x) is a source function that plays an algebraic
role only.? We shall abbreviate

T}
=T, — =T,
8T (x)- 87 ()

the J dependence being understood.

The use of 7 presupposes that the products (2) are
well defined. As we shall see, it suffices to this end that
the vacuum expectation values be well defined. We
defer the discussion of this restriction to a later section
and will be satisfied for the moment with the deliberate
restriction to theories where the singularities of vacuum
expectation values of operator products are not worse
than in each perturbation theoretical order of renor-
malizable theories, which implies the existence of the
vacuum expectation values of time ordered products
and retarded commutators as tempered distributions for
which moreover all operations carried out in this section
are well defined and orders of integrations can be freely
. interchanged. A thorough discussion of this latter point
has recently been given by Zimmermann.'® Note added

9 The functional 7'{J}, being unitary, might have a more than
formal meaning. If we do not, in all of the following, set J =0 after
a finite number of differentiations, but keep it finite, we obtain
reducible and irreducible Green’s functions in the presence of an
external source, like an external current in quantum electro-
dynamics; see footnote 18a. Schwinger (footnote 18) introduced
that functional this way.

10 W, Zimmermann, Nuovo cimento 10, 597 (1958) and forth-
coming paper.
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in proof.—(To Sec. 1.) The solution presented in Eq.
(25) holds formally (i.e., in the power series expansion
and apart from ultraviolet difficulties, which do not
show up in the formal manipulations), if the interaction
is switched off at large positive and negative times,
whereby relativistic invariance in the large is destroyed.
The Green’s functions with J40, however, correspond
to a situation where the term J(x)4 (x), with 4 (x) as
always the renormalized field, is added to the La-
grangian density. Thus, existence of the usual Green’s
functions with J=0 (in the sense of no need of subtrac-
tions, cf. the beginning of Sec. 1) can be interpretated as
“measurability” of the renormalized field even when
the amplitude renormalization is infinite—From the ¢
number property of the commutator [4:,(x),4n(v)] it
follows that integrations of the type Egs. (13), (14), or
(17) and of the type (15) can be interchanged among
themselves, but not with each other. (Integrations of
the type (16) can be interchanged with both other
types.) The noninterchangeability disappears for “re-
duced” functionals that are obtained from the original
ones in an analogous way as ¢ functions were obtained
from 7 functions in the reference of footnote 2 and does
not affect the later calculations. (To Sec. 2) Eq. (48)
is not a consequence of (47), and ¢(%,5)=0 is not the
only solution of (59), if Age’(#) has zeros, because here
for the process of amputation the retarded boundary
condition, which made the amputation unique till
here, is no longer available. The additional terms
J(p)=ime(po)X. crxd(xan—p?), which give rise to the
CDD zeros as seen in Eq. (102), cannot be thought to
be contained in the term written in Eq. (49) because
delta functions are not absolute squares. NonCDD
zeros are excluded if the restriction mentioned at the
beginning of Sec. 1 is invoked, as follows from the result
of Appendix B. (To Sec. 3.) The phenomenon explained
in the foregoing note is expected to show up also here
because of the distinct analogy between the one- and
the two-particle structure analysis. This means that
though the inverse 1—F, of 14-F' in Eq. (73) is still
unique provided the retarded boundary condition is
applicable it can be expected that nontrivial solutions
Xi Vi, 240 of Eqgs. (80) ff will remain, analogous to
CDD R functions. Of course, this does not imply that
an ambiguity will necessarily persist if the analysis is
carried further.—The author is indebted to Dr. S.
Mandelstam for having pointed out to him the per-
turbation theoretical example of an unstable particle,
which suggests X?, V% Zi%0. (To Sec. 4.) The remarks
presented under 4 on the relation of structure analysis
to a theory with field equations, like quantum electro-
dynamics, stand amplification. If there is a subtraction
permitted for the vertex, a nonvanishing dispersive part
(namely, a constant) is compatible with a vanishing
absorptive part of the vertex that is two-particle irre-
ducible with respect to an external coordinate. If no
subtraction is made, the dispersive part would also
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vanish, which leads to vanishing results throughout.
(The dispensability of a subtraction follows similarly as
in Sec. 5 for the original vertex, because the Born ap-
proximation is the same. These considerations do not
apply to a superrenormalizable theory where in general
the Born approximation of the vertex does not vanish.)
It is well known that because of (1) and the present
remarks, 7 transforms relativistically' according to®

U(a,A)T{J}U(a,A)'=T{J'}, 4)
where J'(x)=J (a-+Ax). Since 7 can be written

T{Jy=T exp(ifA (x)](x)dx),

it is unitary:
THT=77+=1. (5)

We now introduce the functional of two source
functions

RS Ty = THI+iJ /2y T{T—1] )2}, (6)

which generates an infinite set of operator products de-
pending on two sets of coordinates,

R(xl. . .xm’yl. . .yn)

6m+n

=— — CRJ,] F=g=o. (7
8J (21)- - -8 (xm)0J (1) - <87 (yn) Wil )

We shall use the abbreviations,

®{J,J} =@,

6m+n

- - ®(J,J} (®)
8J (1) + +8J (2m)8T (Xmy1) - - 8T (Xmn)

= (Rl...m'm+1...7n+n
as well as

(pu...m,m+1...m+n}j=05 Rl---m.m+1-~m+n-

Since @ is hermitean®® and transforms in analogy to
Eq. (4), the products in Eq. (7) are hermitean and their
vacuum expectation values,

(R(x1+ - Xmyy1- - - yn)y=r(xy- Em Y17 V),

are real relativistically invariant functions (distri-
butions),
From (5) and (6) we find

Ro=—iT+T,=iT+T, . (8)

1 We use standard notations; see e.g., footnote 1.

2 Equations like (4) and following ones mean that upon ex-
pansion of both sides in powers of J the symmetrized coefficients
of each order on both sides are equal, or that equality holds upon
functionally differentiating both sides any number of times and
then setting J identically zero. See, however, footnote 9.

13 The remarks in footnote 9 apply to this functional in an
analogous sense, because of its close relation to 7{J}, at least for
purely imaginary J and for the derivatives Ri...,n.
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which shows that R is the generating functional of the
usual retarded multiple commutators,'* which obeys

R.y=i(x—y)[RaR, ] )
Especially, we have
[R:R,]=0 if (3—3)*<0 (10)
as a generalization of (1). From (6) and (8) we find
Ry =23 G(x1—%2) + -0(Xm-1—%m)
T X (R R R, Ra. (1)

Thus, for exclusively spacelike distances among the x
we have
Rlz...m=R1R2‘ ° ‘Rm.

Therefore, these products are the many-time generaliza-
tion of products introduced by Nishijima.!5:'¢ From (9)
and (11) follows that they vanish unless each yin (7) is
timelike advanced with respect to at least one «:

(12)

The », however, are not subject to any restriction, apart
from that following from Eq. (12).

From (11) and the well-known reduction formula'’
for retarded commutators,

Roy- - oamy=0 unless y<«,, vel---m.

[:Ain(y))Rz]=i dZA(y_Z)Ksz.zy

where K,=9,#d,,+m?, or directly from the asymptotic
condition and (6), (8) we find

[Au(y),®.]=i f GA(y-2)K, G, (13)

In order to deduce the expansion of ® in normal-
ordered products, we insert the general ansatz,

= :exp[fduAi,,(u)Kué/&J’(u)]:F{j,],]'} [ 720,
where F is a ¢ number functional into (13). This leads to

f dzA(y—2)K.[6/67 (z)—8/8]' (z)JF{J ,J,J'} =0

1 See footnotes 3, 4. Retarded products were already used by
G. Killén and J. C. Polkinghorne.

16 K. Nishijima, footnote 4. See also K. Baumann, Z. Physik 152,
448 (1958). .

16 They are not, however, related to products recently intro-
duced by J. C. Polkinghorne, Proc. Roy. Soc. (London) A247, 557
(1958), which would be deduced from the generating functional
THNT{THTYTHJT ).

"W, Zimmermann, Nuovo cimento 10, 597 (1958). For in-
stance, let yo— — % in (9). In convolutions the Klein-Gordon
operator K will always stand next to a solution or Green’s function
of the Klein-Gordon equation and operates on the other factor,
be it to the right or left.
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provided J' is on the mass shell, and therefore allows to
replace in the foregoing equation 3/3J'(u) by 8/67 (u).
Upon identification of F{J,7,0} by taking the vacuum
expectation value, we obtain the desired expansion

®R= :exp[ f dud i ()K,8/87 (%)}:((R). (19

We furthermore find directly from (6) and the asymp-
totic condition,

1
Rem—( 45,0+ [autnsa— 0K 13)
and
(Rx,ym fduAAv (y“‘u)Kum,w’u (16)
and for the boundary term in Eq. (15),
1
'2"{Ain (y); (Rz} = Ain(‘*) (3’)(35{' azA in(+) (y)
1
+§ fduA;(y-—ﬂ)KuG%z.m (17)

Equation (15) is obviously the generalization of the
usual

Ro=Ap(2)+ f dudnon(t—w)K. Ry, (152)

From (6) various identities between the generalized
retarded products can be derived. Keeping in mind the
retardedness described in (12) we are only interested in
identities not involving step functions. They are ob-
tained from (6) by repeated differentiation and use of
(5), (8). We list those relations we shall need later:

R.y—R,..=i[R.R,], (18)

1
Ray=—{RaR,},
2
1 i
Rzy,z:E{Rz. =Ry} +’2“{Rz,1hRm} +i[RwazJ: (20)
1 1
nyz = “’Rz. rty+"{R:y7Rz}
4 2

+;[R2. Z)Ry:H";[RZ. u:Rx]- (21)

A nonrecursive formula for a general R,,;- - - can also be
derived. Another set of identities is obtained from

RS Jy&{—J, T}=1

upon differentiation, which gives an especially simple

IN QUANTUM FIELD THEORY
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expression for Ry, -+ with an even number of first
indices in terms of lower Rupw: .

The generalized retarded products with not more than
» first indices provide simple expressions for the scat-
tering amplitudes for processes with #-1 outgoing and
an arbitrary number of ingoing particles. Namely, from
(6) and (14) we find

(=TT

= :exp[fduA;n(u)Kuﬁ/éJ(u)]:

. (5/5J1~25/611) e (a/a.i,.—%s/af,.) (®)] 7=0r

From this, the matrix element )
(one particle{ 7' (%" - -x,)| ingoing particles),

and thus the desired scattering amplitude is immediately
found. .

We shall later draw conclusions from the structure of
the perturbation theoretical expansion of ®{J,J}, which
we therefore derive here in an entirely formal manner,
disregarding all questions of existence and renormaliza-
tion terms. Let the field equation be

K4 (x)=—-H,/ 4]

Then Schwinger’s functional differential equation'® be-
comes

—iK,To=—H, [—i5/6] (x)]T+T (2)T.  (22)

From Eqg. (22}, the hermitean conjugate equation,
and Eq. (6) we find

K.®.=— Gﬂw'[a/sj (x)-—%&/ﬁ](x)]

1 _ P2
+~zzw'[a/aJ<x)+~a/aJ<x)])a+f<x>a (23)
2 2

and

K, Ry { ~in'{s/sJ ) —-;a/af <y>]

+in’[6/6f(y)+;6/8J(y)]}(Rz—{-j(y)(ﬁz. (24)

The conversion into integral equations'®® could be

18 T, Schwinger,. Proc. Natl. Acad. Sci. 37, 452 (1951). See also
N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of
Quantized Fields (Interscience Publishers, Inc., New York, 1959),
p. 424. We shall refer to this book as B and S.

18» These integral equations lead, upon expansion in powers
of J and J, to two infinite systems of coupled linear integral
equations between 7 functions that stand to double graphs in
the same relation as the infinite system of integral equations
for r functions obtained from the integrated form of (22) stands
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done according to (15) and (16). The formal solution of
(23), (24) can be found with the help of functional
Fourier transforms,!? or by insertion of the well-known
formal solution of (22),

T=S+:exp[fduA;n(u)Kué/éf(u)]:
-exp(-—iwa[—icS/éf(x)]dx)

1
‘CXP[_E f f dydy'J(y)Ar(y—y')J (y’)]

into (6). The result is

®{J,J)= :exp[fduA in(u)Kus/BJ(u)]:
. exp( — wa’[B/Bj(x)]B/él(x)dx-l- (22-3)
X f H,"'[8/6J (x)]6%/8] (x)*dax—+ - - )
1 N _
-exp[; [ [ ezt pasiy—aca

off dydz](y)ARem(y“Z)f(Z)], (25)

which can also directly be checked to be a solution of
(23), (24). The structure implied by (25) will later be
investigated. For the moment we only remark that
expanding (25) gives rise to the “double graphs”
described by Dyson. 2%

As remarked in the introduction, R, as found from
(25) is also a formal solution of the basic equation (9)

to Feynman graphs. The equations are the covariant form
of the system of coupled integral equations found by W. Zimmer-
mann, Nuovo cimento 11, 577 (1954). The advanced func-
tional T{J— (/20 3T+H{J+(i/2)}J} also satisfies (23), (24),
but obeys different boundary conditions. The role of J as a
source is seen from (8), (22), (15a), which give R.=4i,(x)
+ S AuAret(x—u)[ —Ho (Ru)+J ()]

1 See e.g., Band S, p. 484.

®F, J. Dyson, footnote 7. See also C. N. Yang and D. Feldman,
Pll;ysso Rev. 79, 972 (1950) and G. Kaillén, Arkiv Fysik 2, 371

nJf (25) is expanded, it leads to graphs with vertices that are
connected by any odd number of advanced lines to later vertices,
and not only by one such line as in Dyson’s description. This is
because of the that in (25) thé §A* and —4A~ lines arising in
the Heisenberg representation approach have been split into A,
and A lines, and the latter lines been absorbed among the Ag,:
lines, taking into account all possible distributions of lines on a
given skeleton. The simplest example is provided by two parallel
contraction lines between two points: $AT-3AT4-(~24™). (—14™)
-] z—l(Alxl-)Ax— 27A A= 2714 - A1 =271 ARet ARet— 2 284y Aav. Note
also X
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as is not difficult to check. Moreover, the structure of
the renormalized perturbation theoretical solution,
which is the unique solution of (9) in the precise pertur-
bation theoretical sense, is the same as that derivable
from (25) if H,, is properly chosen and self energies and
vertex parts are summed up.

2. ONE-PARTICLE STRUCTURE

The one-particle singularities of Feynman amplitudes
have recently been investigated by Zimmermann.? He
found that on the basis of locality and the asymptotic
condition alone, these singularities can be proved to be
those one infers from a general Feynman graph.

We first derive a similar result for r functions, closely
following Zimmermann’s method.

Define

Rouwe(x; 1< -my)

=R(x, x+mn- %+,
—fdx'AAv(x—x’)Ker(x’, &+ oa'n,).  (26)

According to Zimmermann? the Fourier transform of
this operator is proportional to that of the operator
Aous(x). Because of the generating functional (8) of
retarded commutators we have by partial integration,

R(x, x4+« -atn.2,0 - - 5,)
=fdx’AAv(x—x’)K,:R(x’, x4tz
68
+___..__.__
8T (21)- - -8J (2,)

XLTHT}Roue (x5 m- - 0 T{T} | sm0  (27)

and

R(x, x4m- - xtmzy- - -2)
=fdx’ARet(x—x')Ker(x', 2 4n--z). (28)
With the definition

fdxe"’”R‘,ug(x; N1 Nr)
= (2m)8(p*—m))Roue(p;m - -nr),

we obtain for the Fourier transforms of (27) and (28),

2 W, Zimmermann, Nuovo cimento 13, 503 (1959).

3 W. Zimmermann, Nuovo cimento 10, 567 (1958), where a
proof is given for time-ordered products. By using the results of
R. Haag, Phys. Rev. 112, 669 &958), however, the proof can be
extended to R products.
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R(psme 21 20)
=[(p—ie)z—mzj—‘[(pQ—mz)R(p; UTERRT ...z,)]

s

- + 2,". %6 2 A‘Z —_——
(2m)%8(p m)aj(zl)- - 8J(z,)

X[T+{J}Rout(P; m° ’711') T{]}:H J=0
=[(p+ie)*—m* T L (P —m)R(p;m - *nr21+ +2,) ).
In the difference

2mie(po)d(p*—m* )L (p*~m*)R(p;m- - *nr 51 - +24)]
6:

L 1 e —

()P m)af(zl)-waf(z,)

.X[T-‘-{J}Rout(p; LIERRE 1Y) T{]}:” J=0,

we insert, because of the above remark,

8(p*—m*)Rout(p;m1- - - 11)
=5§(p*—m2) Rous (P)C(H; m- - * 1),

where C(p;m- - +,) is a ¢ number, such that

_21!'1:6(?0)5(?2— m2)[(p2—-—nz?)R(P; TR W I 'Z.)]
5:

= (2m)B(p—mt)——————

(@) (= m )8.1(21)- 07 (2,)

XET+{]}ROM(P)T{J}]I J=0C(P§ /i '777)-

The omission of #;- - -y, permits; because of C(p)=1, to
eliminate Roys. This gives

3PP —m)[ (P —m)R(p;m- - 131+ -54) ]
=3(p—m)(P*—m)R(p; 51- - -2) JC(p5m- - -m1).

In order to eliminate C(p;n1- - *n,), we keep only z,=0
and take the vacuum expectation value. Because of

— (p—m)(R(p; 0))= f due'?*K Ar' (x)dx=1

if p*=m? we finally obtain*

$(p*—m )L (P*—m)R(p; m- - nryzr - 254 ]
==3(pP—m)L(F*—m)R(p; m- - *1.,0) ]
XL =mIR(p; 20 -2 ], (29)

where also an integration over ;- - -5, should be per-
formed.

For the following, we -wish to generalize (29), re-
turning to functionals. To this end it is convenient to
derive from (25) a one-particle-structure ansatz which
conforms with (29) for each possible singularity.

Consider the most general double graph® in the

% Equation (29) is analogous to Eq. (35) of footnote 22; K.
Nishijima, footnote 4, and K. Baumann, footnote 15, give in the
last factor on the right-hand side of (29) the time-ordered product.
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perturbation expansion of (25). Since the skeleton is the
same as that of a Feynman graph, all interior and end
lines will be self-energy corrected, and thus actually be
the function,

7(2,y) = Aget' (x—y) =B (x— y){(4 (x),4 ()]
for retarded and

34 (@—y)=x{4(*),A(})

for contraction lines. These latter lines, however, will
not appear explicitly in the following.
Next, note that the expansion of the functional {R ) is

(R)= f dohnet (1—2)T @)+ (RS, (30)

where (R.') contains the second and higher powers of J
and will, due to (15a) and the remarks just made, begin
with a Aget/-function at x. We shall find it sometimes
useful to display it by writing

(R~ [ dstmad (o2 (R,

where barring a coordinate means ‘“amputation” by
division in momentum space.?® Similarly, from (16) and
the foregoing remarks, we infer the presence of A’ lines
at the coordinates at which, according to (7), J is
attached. Altogether we have

w1
(R.)= 2 —
n=2 7!

X(R(Zpi1" - *@n))* Aret (41— 01)
XTI (v1) -+« Aret’ (00— va)J (¥n),

f~ . -fdzdul- o dundvy- - dv,ARed (x—3)

and correspondingly,
<.R z, I...ﬂ’>
=(RE G Fm))

- 1 '
+3> -1 .fdvl. BV R(E, Gy Gy - “Wn))

=1 9!

X Agret' (01— 01)J (v1) - - -Apet/ (un"vn)f (). (31)

We shall now use a graphical notation where the last
functional is represented by a circle, a smaller circle on
the periphery denoting the (amputated) first coordinate,
and the function Ag.: is represented by a barred double
line.

From (25) one easily sees that a line that connects
two otherwise separated graph parts must be a retarded
or, more precisely, Ag. line, and that both those parts
are again the most general double graphs with the re-

25 The question of zeros of Ares' (#) will be discussed in detail in
Sec. 5 and will be seen to present no difficulty here.
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Fi1G. 1. General one-particle structure of (R.’), Eq. (33).

maining external lines and the new external line at the
bridge. This fact, well known for Feynman graphs, is
due to the exponential structure of (25). However, if all
integrations should be over all space-time, the later
graph part should be one-particle irreducible between
the latest coordinate x and the bridge to avoid double
counting, but will in general have one-particle bridges
to other graph parts. Thus the general structure we
conjecture to be correct is the generalization of (31)
shown in Fig. 1 which, as explained in the foregoing,
stands for the functional equation,

x 1
RY=(R.H+ X —'(Rz,r...ﬁ“'>(R1’>~ (R (32)

n=1 %!

where integration over repeated coordinates is implied.
The functional (R.%), whose further indices indicate
functional derivatives as usual, is supposed to be one-
particle irreducible between any two coordinates being
displayed as well as those being set free by further
functional differentiation. The precise meaning of this
condition will soon become clear.

It is important to note that (32) does not imply a loss
of generality, because it can be solved for (R.% by
iteration of

o (=—1)}"
(RH=R+ 2 — ARt KR (Rahy - (33)
obtained from (32), or
(RATH=(RHT})
with
() =T ()RS (1)) = (Re{ ) )
=J(x)+R:H{I}). (39

To any finite order m of J, the sums and iterative

“solution of (33) break off. Thus, no convergence prob-
lems are here involved,?® and (33) defines the functional
{R.% explicitly. The same breakoff takes place in (32).
With (33) it is not difficult to show that (R,’) is not one-
particle singular, in the sense of (29), with respect to any
separation of its coordinates into two groups.

. Fic. 2. Decomposition of (R., ),
=4+ Eq. (37).

26 Such problems could arise if the functionals were used non-
formally, see footnotes 9 and 13.—The author is indebted to Dr.
H. Araki for having pointed out that an earlier form of (33), (34)
was incorrect.

SYMANZIK

Equations (33) and (34) display that (R.?) is again
a real invariant retarded functional in the sense of (12).
It is this convenient separation of retardedness (12) and
completeness (18) that renders the retarded functions
suitable for our analysis. As we shall see, in the two-
particle structure analysis (12) has also to be used at
later steps of the argument.

We now use the abbreviation,

<Rz. U ia>E <sz Upeee '.>

w 1
+3 T(.Rz,i'...ﬁuv...i><R1,>' - AR ).

n=l §!

35)

Therefore, the indices of (R.*) do not mean functional
derivatives. Instead, we have

)
R yrre =Rz, g (R s Tuver *WR1, )
87 (y)

=(Rz. 1w "N Ry, (36)

where we use
(Rz,)=Are (6= ) +(Raz,y), (37
which follows from (30) and is depicted in Fig. 2, a

4

square denoting the amputated unprimed functional.
Thus, we find from (32)

F1c. 3. Analysis of (R, ),
Eqgs. (39) and (41).

(RSy=(R.") (38)
and with (36)
(Ray=(Ro. i)+ (Ra 1N R1.u"y=(Ro 1) (R1,), (39)
<R z, uv,): (-R z, uv) = <—R:¢,T§is><Rl, u><R2,v>
+<Rz,iis><Rl.uv>’ (40)
etc. The iteration of (39)
(R::, u,> = <Rz, u i8>+ ZI <R z,Ti8><Rl,§i'> et <Rn, u is)
can be resummed to give
(R, )= (R, ™)+ (R X N1,y =(Ra)XR1.u™), (41)

which proves (41) since the sum breaks off in any finite
order of J. Multiplication of (40) by (R,,z) and use of
(41), (37) give

(Rz,uv>=(Rz.ﬁva.T?i‘)(Rl,u)(R?w}- (42)
Equations (39) and (41), and (40) and (42) are depicted
in Figs. 3 and 4. Though these figures closely resemble

those of ordinary graphs, they actually show ‘“meta-
graphs,” because by functional differentiation and use



GREEN’'S FUNCTIONS IN QUANTUM FIELD THEORY

of (36) an arbitrary number of additional external lines?’
can be attached to them.
Let us insert (14) into (18). This gives

:exp[ fduAin(u)KuB/N(u)]t (Raz,0)—(Ry,2))

= :exp[fduAin(u)KuB/H(u)]:
6
-{ex?[ffdu du BJ’(u’)KulzN_(u —u'")
[ 8
Ku”______ _ du'du’

X 6]”(u”)] exp[ff v 8J' (')

il
BJII(MN)]

URATFT I RATHT ') [r=irrmo

What counts for the “structure” of the right-hand side
is not which intermediate states did contribute in (18),

XK yiat(w' —u')Ky

(43)

Fi6. 4. Analysis of (R, «»"), Eq. (40).

but how many contraction lines connect the two factor
functionals, which are connected within themselves. It
is one connecting line, then a 7A-line, which in general
gives rise to several separate one-particle singularities
(singularities on mass hyperboloids) in momentum
space, their position depending on where the external
particles, represented by fduf.K.8/8J(u), are at-
tached, rather than a one-particle intermediate state;
this latter being the case only for the vacuum expecta-
tion value of (43) with /=0. In addition, there will be
the singularities studied before of the factors in (43) of
the retarded or advanced type, respectively, lying in
momentum space on the same hyperboloids?® as the
intermediate states singularities just described. Since
both sides of (43) are equal, these singularities must
altogether cancel leaving a remainder that is finite in the
first place and must be shown to vanish in the next step;
this means, is open for the many-particle structure
analysis of later sections.

7 Because of this capacity, ‘‘metagraphs” represent not only the
vacuum expectation value, but, with (14), all matrix elements of
an operator product. Note that since (Rg, ;)| sao={(Rz, ,*)| 7m0
={(R,, 4**)| 7=0=0, Fig. 3 becomes a triviality in lowest order of J.

28 Of course, they may occasionally be ruled out because of
energy-momentum conservation.
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Clearly, in order to satisfy (43) it is sufficient to do so
for the vacuum expectation value,

<R:c.y>—'(Ry.z>=i<[Rz,Ry]>'
From (37) and (14) we find

(44)

Ro= Asm(x)+ f drmed (r— 1) (31) £ R,

Upon use of (13), (44) takes the form?
<Rz, E’>ARet”(y“ u)— Age’ (x— ”)(Ry. 17’>

_AH (x—y) = 1<[R IlyR?I,]>7
where the abbreviations

Apet'=A4,,—4, AV=A—-A

(45)

have been used. With (39) we rewrite (45) as follows:

(Rz,2")Aget” (y— 1) (R -7} R1, 3 YAret' (y— 1)
—Are”’ (x—u)(Ry,7")— Arer” (x—u)(R2,a Ry 5%)
—A"(x—y)=#[R.,R,/)=#«[R.,R,])
F+i(R. 1 W[Ry Ry D[R Ri' IRy 1)
— iR 1" Y[Ry, Ry IRy %)
—(R:,z)A(u—2)(Ry,5*). (46)

Here the second equality sign defines [ R.’,R,’]%). The
terms subtracted out denote in order: all one-particle
singularities from (R.), all one-particle singularities
from (R,), correction for twice-subtracted terms, one-
particle intermediate state singularity not yet taken
into account.

Note that all subtractions, except the last one, also
contain contributions that are not singular, because
Aget’, that makes up bridges, has also a nonsingular part
whose treatment is a matter of convention. In addition,
often at the place where Age: is singular, the subtracted
term vanishes because of momentum conservation.

The definition of one-particle singularities (or re-
ducibilities) used here, which is suggested by perturba-
tion theory, turns out to be the most convenient one, as
we shall repeatedly see.

We now replace on the right-hand side of (46) every-
where «{[R:/,R,”]) etc., by their values given by (45).
Thereupon, with (39), all one-particle reducibilities -
drop out, and (46) reduces to

(R:,5%)Aret’ (y— 1) — Aget’ (x—u)(Ry 7"
—A"(x— y)=#[R z,:Ry,]i>- (47)

It is convenient to amputate the Ag.:'-functions at x
and ¥ to obtain the simple equation®

(Rz,5")— (R, 2")— A" (@—9) =i[R+,Ry']"),

2 Note that on the mass shell Age+-amputation is equivalent to
application of the Klein-Gordon operator.

% Equation (48) is equivalent to (44) since all one-particle
reducibilities can be correctly recovered, as is shown by comparing
(44) and (48) in ascending powers of J. See, however, note added
in proof.

(48)
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whose zero-order part in J
—4" @) =i[R+,Ry"])| 70

will be studied in Sec. 3.

Equation (48) shows that the absorptive part of
{Rz,;%) has no one-particle intermediate-state contribu-
tion. It also has, as a consequence of (48) and the
retardedness condition (12), no retarded or advanced
one-particle singularity. Unfortunately, we can prove
this here only by going back to the full functional (R.).
Equation (48), together with (12) and (30), (38) etc.,
yields a local field for which the proof given at the
beginning of this section is applicable. Thus, the one-
particle singularities of {R.) are known, and since they
have been subtracted out as described after (46), (48)
does not contain them any more. Presumably, a more
direct proof on the basis of (48), (12) is possible.

Equation (48) can be given a different form by ex-
panding the right-hand side as in (43), using (39), (40)
etc., to express everything in terms of (R*). With the
abbreviation,

(49)

1:A+s(x_y)5 Z <RI'I“><R1'§“>‘ .
m,ne=(

X(Rm-l,ﬁi,>iA+(xm - yn)

“(Rennyr, ™)+ Ry 0 ¥} R, %),  (50)
we obtain®
(CR#,RG'TH)
w 1 '
=3 —'(Rz_ﬁ...,-,”ﬁA*“(l,l’)- --iAte(nn’)
n=2 n!
ARy 1w ) Y Rz
(Ry, vz >+n§‘(n_2)!( 512"
X (R g3...5 YA+ (1,1)iA+(3,3')
GAF(AA) - iAF )Ry 1ar -, (51)

where further formal tools could be introduced. We only
remark that if (51) is used in (48), it is readily seen from
the exponential structure of (35) that all s signs in (48),
(50), and (51) can simultaneously be dropped,® as one
would have expected.

The question of whether in (48) the functional

31 Here infinite sums seem to occur, but because of (Rzy%*)| suo
=0 in each finite order of J only a finite number of terms in (50)
and (51) do not vanish. An infinite number of intermediate
particles, however, means that also external relative momenta
must be infinite because of frequency conditions.

2 Equation (35) shows that the s sign can be replaced by
operating with an exponential functional differential operator on
both sides of (48). By considering ascending powers of J, one
shows by complete induction that the exponential operator could
have been omitted because of (Ri")|smo=(R),4")|s-0=0.—We
could have obtained this result more easily by introducing,
following J. Schwinger, footnote 18, J(x) instead of J(x) as vari-
able, see (34). For other purposes, however, this change does not
prove convenient.
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(Rz,5*) can be singled out by multiplication of both
sides with 8(x—y) will be discussed in Sec. 5.

We have seen that (44) can be formulated entirely in
terms of one-particle irreducible functionals, the one-
particle singularities cancelling. We plan to eliminate in
the next step the two-particle singularities in (48) and
to express it in terms of two-particle irreducible func-
tionals. We found it too difficult to perform this next
step in the same generality as the first one, because the
various possibilities of two-particle cuts in a general
graph are complicated to disentangle. We shall be more
modest and will first present for purposes of illustration
the method to be used in the next section here, in
application to the much simpler one-particle case.

Let us restrict our attention to the one-particle re-
ducibilities of the functional (R,,y....) between x and
the whole group yz- - -. The ansatz,

(Ra,yeery=(R e aXB1, ys ) (52)

defines a functional (&, ,....") because with (39) and (37)
it can be solved to give

(Ba,yser)=(Rs gz )— (R, 1" R1,ys..").

The indices of (B, ,....)) do not denote functional
derivatives.
We rewrite (52) as

R =r(x)Rr, (53)

which is to express that if R, is inserted into a commu-
tator or anticommutator and, if as in (43) contraction
differentiations are to be carried out, r(x,1), though
being numerically equal to (R.,:), must not be differ-
entiated, but (52) should be used instead. With (37),
(39) we can rewrite (53) as

Rz,=in+’i(x)1)R1,: (54)
where 7;(x,1) numerically equals {R.1**) but must, as
before r(x,1), not be differentiated for contractions. It is
convenient to rewrite (54) as

R =R +ri(x1R,, (55)
where
0 if once differentiated
={ - (56)
R, if at least twice differentiated

for purposes of contraction. We depict (53) and (54) in
Fig. 5. The broken lines indicate where contraction
differentiations should be applied. Other differentiations

b-7-4- 4

Fic. 5. Alternative analysis of (R.’), Eqs. (53) and (54).
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can be carried out either like contraction differentiations
or as general differentiations of all functionals.®

We now insert (53) and (54) into (44) in the following
way: in all terms we shall exhibit the one-particle
reducibility between x and y nearest to #, if there is any.
With (37), the equation after (44), and (13) this gives®

(2, ){R . )+ Aret (x— 2’)
+<Ez. yi>"' (R, )7 (y,u)—Aret’ (y—=x)
= —A(x—u)(Ry,5)+7:(x@)i[Ru,Ry])
—(R.,a)A(u—y)+i[R.Balr (y,u).

In analogy to (45) we write
«[R#RaD=r:(#a) ~7:(@,3)— A" (F—0)~y(£,8), (58)

which defines the functional ¢ (%i). Upon use of (58),
(44), (56), and (53) in (57) we obtain

Aot (x— ) (@,0)r(v,9) =0, {59

wherefrom y(%,7) =0 follows.* Thus (58) becomes, be-
cause of (56), identical with (48).

A third method, and actually the simplest one, is to
insert (53) into (45). However, this method is not
practical in the two-particle case.

Insertion of (53) and (55) into (19) etc., allows to
exhibit, for instance, in the manner explained before
(57), the one-particle reducibilities. However, we shall
not need the formulas obtained, which in all cases can
also be written down by inspection.

The Eqgs. (44) or (47) also give one-particle singu-
larities from the Agmet-parts of the end lines leading to
% or ¥, according to (15), (16). Equating the residua on
both sides of those equations gives the unitarity condi-
tion. This technique is analogous to Zimmermann’s for
deriving the asymptotic condition.?® Of course, here the
interchangebility of integrations has been assumed, by
reference to Zimmermann’s work.?

As a useful result of this section we shall keep in mind
that one-particle singularities always cancel when (44)
or (45) are used and can be dropped at an arbitrary
stage of the calculation.

Sy

3. TWO-PARTICLE STRUCTURE
Type of Singularities

Retarded functions have singularities as a conse-
quence of two-particle cuts in double graphs. These
singularities are analogous to those Feynman ampli-
tudes have as a consequence of two-particle cuts in
Feynman graphs and appear at the threshold of a real
two-particle energy, which is 2m in our case. The
_character of these singularities is derivable from uni-
tarity and the relevant two-particle phase space factor.

8 Of course, “contraction differentiations” are ordinary func-
tional differentiations, but we find it convenient for our purposes
to deal with them as ined.

3 Multiply (59) from the right by r;(¢,w), integrate and use (41),
(37), and again (59). See, however, note added in proof.
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In a double graph there are, as (25) shows, several
types of two-particle cuts. One may cut two Agec-lines,
one Aget- and one Aas-line, and one Agre:- and one
A;/2-line. Let us discuss the integrals,

HR‘A’l(x. . -’y- . -)
= f fdzdz’dud«u’lf‘ (x- 25"

X ARet (Z"‘ u)ARet,Av,l (z'l - u,)G(y e Juu/)'

For the singularity under consideration, the functions
F and G merely act as short-range form factors, which
provide a cutoff for the otherwise divergent integrals
obtained by replacing F and G by point functions. If p
is the momentum conjugate to x—y, and thus the mo-
mentum transported by the two cut lines, with z=p?*
~4m? one finds for the Fourier transforms of Hg and H;
a singularity of the type const (—2)% where for >0 the
branch is to be chosen according to the sign of po, and
no singularity for H 4. Nevertheless, this last type of cut
has to be taken into account since otherwise the
elimination of the two-particle intermediate states in
the absorptive parts of the “irreducible” functions would
not be possible. In (44) the singularities just considered
of the left-hand side will be equalled on the right-hand
side if it is written as in (43) by similar two-particle
singularities in the two factors of the retarded and
advanced type, respectively, and by terms with a two-
particle intermediate state where the pairs of lines
iAT-iAtT and (—747) - (—1A™) give the singularities
const(2)8(po) (2)* and constd(2)8( — po) (2)}, respectively.

Choice of Equations

If we follow the method explained in the last section,
we have to choose an ansatz that is the analog of (53)
and (55), or Fig. 5. The enumeration of possible two-
particle cuts just given, as well as inspection of (25) to
determine the factors® leads to

1
Rz.m=Er(x,yIZ)Rrﬁ,=ui+r(x1,y2)Rf,r,u‘ (60)

as the ﬁnalog of (53), where numerically
r(xy12)=(Rzp12), 7(21,92)=(Ra1,y2).

In this section barring of coordinates is to indicate the
absence of the full ome-particle reducible parts (cf.,
Fig. 4), and not of Age:’ or Ax, alone.? Equation (60) is

3 For instance, the factor of the last term of the right-hand side
of (60), i.e., with a retarded and an advanced line, is obtained by
functionally differentiating (25) with respect to J and J. The A;-
part from the first differentiation does not contribute since there
must be at least one retarded line on the cut.

36 Barring, always applied to the irreducible functionals, can be
made part of their definition such that nonbarring of z means
multiplication of R13,34* by (Rs,:) and integrating over 3. Note
that the irreducible functionals are always connected. They do not
contain terms of the form (R1,3)K3A1(3—4) - R3,1.4%
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depicted in Fig. 6, where a simple line stands for the
function A;/2 and the stroke indicates where contrac-
tion differentiations (besides z and #) are to be applied.
The graph with the A;/2-line is absorbed in the first
term on the right-hand side of (60) because r(x1,y2)
according to (19) also contains

1 1
5<{R27Ain(1)} y2>=5<{Rz,u2;A in(l)}>7

which can be evaluated with (17) to give just the re-
quired term. The functionals Riz, ..’ and Rz 1.." are two-
irreducible between 1, 2 and z, # in an intuitive sense to
be made precise later.

Since two R® functionals appear in (60), it has to be
supplemented by the ansatz

1
Rzu, zu,:' 'z‘f(xy,lz)Rﬁ, zui+r(xy1;2)R7,Tzui7 (61)

where

<-R:=11,zu,>=(Rzu.zu>_(Rz.z><Rv,u>—<R{¢.u><Rv,2> (62)

in analogy to (37). The use of this definition of the
primed functional is convenient here because it allows
Riz, .4 to be connected.

In order to obtain complete analogy to the system
(53), (55) we have to introduce two more equations of
the type (53), namely

1
Ra:z,uul = Er(x)ylz)Rﬁz, % Z+r(x1 ,yZ)Riz,Tu 7.,

(20<mo) (63)
and

1
Rzyz,u’=Er(xy’12)RI§z,ui+7(xy1a2)R§z.Tui,

(30<mo), (64)

where the time restriction is necessary since otherwise
an additional term with two advanced lines would have
been needed, and the prime of R,,.,." denotes the con-
nected part similar to (62).

The vacuum expectation values of (60), (61), (63),
and (64) together can be written in the symbolic form

'F'=(1'+'F')F/. (65)

‘Here 'F’ is the two-by-two matrix with the elements

1
,F'n:“”'(xy,zu), /F,l =—”(xyu,z),
2 " V2

(66)

'F’zl=\72“f(x,yzu), 'Fao' =7 (wu,y2),

where #'(xy,24) is defined as in (62) and similarly
7' (xyu,z) and ¢’ (xu,y5). 'F’; is the same matrix with the
irreducible functionals, and absence of a prime means
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removal of one-particle reducibilities. 1’=’1 is the
unamputated ‘“unit matrix’’ with the elements

1 1
y= Er(x,Z)r(:v,u)+5r(x,u)r(y,z),

1 1
"Nip= V—Zr(x,Z)r(yu) +\72_r(xu)r(y,2),

"1oy= 0,
1 20 = r(x,z)r(u,y),

and matrix multiplication implies integration over the
interior coordinates.

We now write down, according to the symbolic
equation

F="F(1"+F), (67)
the four equations analogous to (55), namely36:¥
- 1 _
Rz,yzqu:c,yzul+57’i(x;y12)R12,zu
+ri(xf,y§)R2'uu, (68)
~ 1 —
R:cy,zu,=Rzy,zui+57’i(xy,12)R12‘zu
+7'i(xyI)§)R2,1zu; (69)
~ 1 —
Rzz.yu,=Rzz.yu¢+Eri(x;y12)Rl2z,u
+r,~(xI,y§)Rzz,1u, (Zﬂ<u0)7 (70)
and .
R:c:yz,1¢’:Exyz,ui+5’i(xy)T§)Rl2z,u
+r:(xy],2)Roz 1w, (2e<mo), (71)
where, in analogy to (56),%
- _ o1 — \
<Rz,yzul>=<Rx,yzuz>_:2‘ri(x;y12)((RIXRZ))IU (72)

F16. 6. Two-particle structure of (R, yzu), Eq. (60).

3 By integration of the field equation in the Heisenberg repre-

sentation, G. Killén, CERN/T/GK-2, obtained some of the
equations mentioned in footnote 18a and found the ladder ap-
proximation of (69) as Bethe-Salpeter equation.
_ % This is seen if (56) is replaced by the explicit definjtion
R.i=R."— fdir;(x,1)J (1) where for contractions only J but not
ri(x,1) is to be differentiated. Similarly, the notation of (72) is
meant, where for contractions only (R;) and (R3) but not r;(x,y12)
are to be differentiated. Equation (72) is only correct up to one-
particle reducible parts which, however, are always dropped.
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and similarly for the other K¢, Equation (68) is depicted
in Fig. 7.

Discussion of Equations (65), (67)

The vacuum expectation values of (60), (61) can be
taken as determining equations for r;(12,2x) and
r:{2,1zu), and (63), (64) for r,(122,2), (z0<#0), and
7:(22,1u), {(z0<uo). On the other hand, (68), (70) could
be chosen for 7.(x,y12) and r:(x1,y2), (10<2¢), and
(69), (71) for r;(xy,12) and r.(xy1,2), (1o<2,). Since
the iterative solutions of those pairs of equations do not
break off, contrary to the situation in the last section, a
more general discussion is here required.

For (65) to have a solution F./, there must not be a
left eigenvector of (1'4'F’) to the eigenvalue zero. The
solution is unique if there is also no such right eigen-
vector. For (67) right and left are interchanged. From

A+ FY(1—F )= (1="FYU+F)=1" (13)

it easily follows that if both Egs. (65) and (67) should
have solutions, both F; are unique and equal. This is the

only situation we are interested in. Since from (73) we
derive®

5 o
—F/=(1—F/)-—F-(1—F)), (74)
57 8J

it suffices to consider (73) in lowest (zero) order of J, all
higher orders of F; being obtainable with the help of
(74) from lower orders, In zero order of J (73) reduces
to a relativistically invariant integral relation between
four-point functions. Because of translational invari-
ance, we take the Fourier transforms of (73) with re-
spect to the distance between the later coordinate of the
later pair x, y and the later coordinate of the earlier pair
2, %, in a fixed coordinate system. Since this distance has
nonnegative time component, the Fourier transforms
F(K,AA") and F,(K,AA"), where A and A’ are the
relative coordinates of the later and the earlier pair, are
analytic in the upper K, half plane. F(K,A,A") will not
be one-particle singular at some discrete real X since we
assume that all these reducibilities in the equations have
been removed.®

We now have to assume that (73), in zero order of J,
possesses a solution of the form

F(KAAN)=F(K,AA)
+ f F(K,AA)R(K,A",ANA", (75)

where the resolvent R(K,A,A’) is analytic in the upper
K half plane up to discrete singularities, at which we

#® Note that primes can be removed by the procedure explained
in footnote 34. ’ :

4 Therefore, the homogeneous Bethe-Salpeter equation (1 —'F;)A
=0 no longer has a solution.
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F1c. 7. Alternative analysis of (Ry, y+.), Eq. (68).

choose in (75) the retarded boundary condition. We
hope that a more intensive study of (73), using prop-
erties of retarded four-point functions, will lead to such,
or an equivalent, result and expect the analyticity
property of F(K,A,A’) in the K half plane to be im-
portant in this connection.

The 7;(x,y21) etc., being determined, the higher con-
traction derivatives R, ,:z,’ etc., can be found from
(74), and with (73) easily shown to solve (60), (61),
(63), and (64).

Result of Substitution in (44)

Equations (68) and (60) are now inserted into (44) in
the same manner as (55) and (53) were. The calculation
is given in the appendix, and we state the result.

Define, in analogy to (58), three functionals X '(£12,7),
Yi(z1,27), and Z(21,27) by the equations

Xi#129)=r;12,59)—r.(1225) —r:(28,15)

1 )
+‘2“<{Rf.fzzi,Ri} i)+5({R;,§€,R 937

1 1
+£({R§.rz;ﬂRz} *)+§<{Rﬁ.r’%Rz.ai} )

— [ Rex',Rz,5°])~ ([ Riz,o ', Rz 1%
~i[(RiR3),Rz, 71~ #[(RiRs) 5,R]"), (76)
Vi(1£,29)=r.(1,725)—r:(%,12§)
—#[Ry,5,Rz5]9)—«[Rr,R 2,51
~ [ Ry 25, Rs])~i[R1.9,Rz4]%, (717)

- - 1
Z"(l',2")=f¢(1',2')—5({131.1},1%,?}")
(R Rt )~ Re 25 Re) )
5<{ Iy 5-172}> 2{ 1,27 » 5}

1 =3 =3 sy ¥
—E({Ri.ﬁ‘,Rz.#} D, (78)

4 This is meant as follows: the equation f(Ko)(Ko—C)=1 has
no solution for Ky=C, but for the Kq-integration to be perforined
afterwards we use the solution f(Ko)=(Ko+ie—C)?, e—0.
Singularities at ImK,>0 require a contour deformation. Since a
function that vanishes on an interval and is analytic in the half
plane vanishes identically, we expect only discrete singularities of
R(K,A,A"), which can be tackled as described. Note also that due
to (75) the property 7 (x,yzu) =0 unless y is timelike advanced with
respect to x implies the same property for r:(x,yz2).
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which correspond to the equations®

i[RIZ,-Rz]y=Rl2,zy‘Rlz,2y—R2z.lu
1 1
+E{R1,2,Rz} y+5{R2.lny} » (19

(18), and (19), respectively. These functionals satisfy
the linear homogeneous equation

1 — 1
EX "(il2,27)r(z,u12)+5Y"(1ﬁ,227)<{R=.:,R2} w)

+iZ{(12,29)((R. 1,R:]u)=0, (80)

which is the analog of (59).

The meaning of the brackets { }*and [ ]°, denoting
the two-particle irreducible part of the anticommutator
or commutator, will be explained later.

Another linear homogeneous relation between X ¢ V¢,
and Z' is obtained from (20), written as

1 1
Rzu,xu=§{Rz,u1Rz} y+'2'{Rx.z;Ru} y_i[-R:aRzu:lu

by using (61) and (68). The method of the appendix
gives

1 —_
-X{Z12,5)r(2u,12)
2

~iy@zéy)«[zez,u,zez,1]>+<[ze2,,,Ru,l]»

1 _
—;Z’(lf,zg)[({Rz,u,Rz,1}>+<{R2,zyRu,l}>
— 2i<[Rg,R,u,1]>:|= 0, (81)

which is the analog of an equation for one-particle
reducibilities we did not give.
A relation between ¥ and Z* alone is obtained from

1
Rzz,yu=5{Rz)Rz}w:

derived from (19), upon use of (70), (68), and (60). It is

iyi(@,z-)([Rz,l,Rz,uD
1 _
+ 2 A2 2((Re s Rou) =0, (0<e). (82)

The time restriction implies 1< 2,.
If in the last example the restriction z<# is dropped,
it is necessary to add in (70) the fourth term

4 Equation (79) is easily derived from (18) and (19). The index
of the brackets denotes differentiation of the whole brackets.
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1r:(x12,5)R,, w12. Thereupon one obtains instead of (82),
the equation

iYﬂ(ﬁé@)[—ir(z,uln+<ERz,hRﬂu>3
1
+EZ‘(IE,2y)({Rz,17R2}u>

1 —
+EU‘(212,g)r(z,u12)=0, (83)
where

— — T _ 1

Uz12,9) =ff(5712,17)+;’£(5,12?7)—E({Rz,ﬁ‘,RIE‘} 9
1 _ i _
“;{RE,RH.#} i)“’;([Ri.ﬁIi,Ri]‘>
i i
—~—([R:1,Rs,519~~[Rz5»" R
4 4
; 1 |
‘“;([Rz,!aRf.ﬁ]">“‘5({R£.zii,(RrRi)} %

1
~ -2‘<{Ri, (RiR3),} Y (84)

in analogy to (21).

There exist many more linear homogeneous relations
between quantities like those considered. For example,
from (61) we derive by ordinary differentiation

) r
Rzu,zy:Rzu,zyi+"2'fi(12yxy)Rzu,12
+r:(1,2y2)R w21, (85)

"where R, :,* is similar to, but not identical with,

R,...," because of a different irreducibility condition.
On defining

Yoz, 20 *=r:(1,289) —r(2,129) — iR, 5,Rz. 219
— ([ Ry, 25" Rs]1)—«[Rx,2,R3,5]°)
— [ Ri,Rs,2;°]") (86)

and
. _ 1
Z‘(12,i?7)=’s(12,iﬂ)—§({Ri.z,R2,ﬁ}‘>
1R i Rz} 1R R3 3}
5({ 1,27 » §}> 5<{ 1.9 5.5}>
1
—5<{Rr,1?f,sy-"}"> (87)

we obtain from

1
Rzu,zy=E{Reru} zy
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the equation

f—l?fdi,zm<£Rz.hRu.zJ>
1.
—EZi(IZ,:E(l})<{Rz,1,Ru.2}>=0- (88)

Discussion of Results

In all the definitions (76), (77), (78), (84), (86), (87),
the right-hand side would vanish if the irreducibility
sign were absent. Thus, these equations are the two-
particle analogs of (48) and similar equations easily
obtainable in the one-particle case, provided we can
show that the left hand sides X etc., vanish and that
the “irreducible” brackets actually have that meaning.

We did not succeed in strictly excluding the possi-
bility of a nontrivial solution of the linear homogeneous
equations (80), (81), (82), (83), (86), which are analo-
gous to (59) but cannot be solved in the same way.®
However, one can derive still more equations restricting
the quantities X ¢ etc. For instance, it was found that a
method analogous to the first one of the foregoing sec-
tion, resulting in (47), leads to an equation between ¥'*
and Z* containing linear and bilinear terms. In this
case, however, the calculation is considerably more
cumbersome than that one of the appendix.

The explanation of this fact that, in whatever way one
proceeds, the trivial solution Xi=Vi=Zi=...=0 re-
mains, has been mentioned in the introduction, namely
that the renormalized perturbation theoretical solution
(and, in a still more formal sense,* even the unre-
normalized one) is a formal solution of the system (9) or
(12), (18), and it was the structure of that solution
which we took as a guide in setting up the Bethe-
Salpeter equations of this section. Our findings not only
show that the “trivial” solution is a consistent one, but
strongly suggest that it is the only possible solution of
the nonlinear system as far as the two-particle singu-
larities are concerned, or at least the only solution of
physical interest. We hope that further analysis will
decide this question. In any case, if the system (80) etc.,
admits only the trivial solution in lowest order of J, this
is so in all orders, as is seen by taking functional
derivatives.

)
Y

O pe

7
() Ve
/’.\‘«'/ s/
U

Fic, 8. Two-particle reducibilities of {{R1,3,* Rz} o), Eq. (A.2).

SO

43 See, however, note added in proof.

4 Note that if entirely formal manipulations with singular
functions are considered satisfying (25) solves (9) with H, being
any polynomial.
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F16. 9. Two particle reducibilities of ({R, Ry, :}c), Eq. (A.3).

Irreducible Brackets

The meaning of the symbol 7 at all commutators and
anticommutators in (76), (77), (78), (84), (86), and (87)
is strictly defined by integral equations of the type
(A.2), (A.3), (A.5), (A.6) etc., of the appendix A, and is
discussed at the end of that appendix. The result is that
it corresponds to picking out of the ordinary brackets
the two-particle irreducible parts as described in the
following.

Note that all those brackets have the property called
9, that they do not allow a cut that separates «, y and
1, 2 from each other and cuts only either two lines (in
the sense of the Bethe-Salpeter equations of this section)
in one of the two factors, or one line in one factor and
a free-particle (contraction) line. This is trivial for
brackets like ((R1,5,R#3]) and follows from (72) and the
definition of the irreducible factors for brackets like

«Rinfﬁiy—Ri})) ({Eiyfi)ﬁzvﬁi}% and <[(RIRE):R5.ﬁi]>'

Thus, two-particle cuts can only be of the type illus-
trated by the examples of Figs. 8 and 9. These graphs
describe the vacuum expectation value of brackets
evaluated as on the right-hand side of (43). Broken lines
stand for contraction functions. The other symbols have
the usual meaning, and the one-particle structure in-
vestigated in the last section, cf., Fig. 3, has been used.
“Trreducible” means that, in order to avoid double-
counting, on the upper left from the cut no further two-
particle cut should be possible. The two-particle cuts in
the graphs are composed of two one-particle cuts of
known properties, and thus completely defined.

As shown at the end of appendix A, the explicit form
of e.g., ((Rz1,R3,5]%) is obtained by stretching out the
functionals (R.,1) and (R,,,) into a chain of any length
of alternatively irreducible and reducible functionals,
and connecting the irreducible links of one chain with
all irreducible links of the other chain by functional
differential operators

ZEex‘p[ f f du’du”sjla(#/)

XK iat(w —u'" ) Ky

6
5T (uu)]

such that the whole graph becomes two-particle irre-
ducible, the one-particle-reducible end lines being cut
off. An example is given in Fig. 10. All such construc-
tions are to be summed up, and the conjugate complex
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F16. 10. Contribution to
{[Rz1.R2,41)

quantity subtracted, or added for the anticommutator.
The other brackets can be similarly described.

It is important to note that this expansion breaks off
for any finite momentum transferred between the two
chains, since on each irreducible link must end at least
one free-particle line, and all lines have the same fre-
quency sign. Already this shows that this expansion has
no relation to perturbation theory but is an expansion in
the number of overcrossing groups of contraction lines,
which might be called a structure expansion. It directly
shows the absence of two-particle singularities (or
reducibilities) in the irreducible brackets.

In the appendix it is also pointed out that the sum of
all brackets on the right hand side of (77) vanishes if the
distance between x and 1 is spacelike, or if at least one
of the two coordinates ¥, 2 is not timelike advanced to at
least one of the coordinates x, 1, provided we assume
that the solutions of (A.2), (A.3) and similar equations
that strictly define the irreducible brackets are unique.
The sums of brackets in (76), (78) etc., have similar
properties, in concordance with (12).

Decomposition of Other Functionals

On the basis of the considerations which led us finally
to (75) we can easily obtain relations for functionals
with less than four coordinates. Let us define two
functionals R, ;z' and R.; 3’ by the equations

1
Rz,m=Rz,zui+57(x,12)RT§,wi+r'(xl,Z)Ri,Iiai (89)
and .
Rzi,ﬁ’=Rzi,ﬂi+gr(xy12)RT§2,Ei

+7'(#1,2)Rsz,13%  (30<wo), (90)

where the notation has the usual meaning. The vacuum
expectation values can be written in the symbolic form

G=G+G'F,, 91)
where G’ = { (1/V2)r(x,5u),r' (x3,4)} and F; has thesame
meaning as in (65) and thereafter. With (73) we obtain
from (91) by right multiplication by 1'4'F’ /%

) G'=G/+G/F'. (92)
45 The possibility of calculations like these, based on (73), were

the reason why we started our analysis by discussing the func-
tionals with four, and not with less, coordinates.
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This can further be manipulated similarly as mentioned
a few lines after (73) to give the two equations

~ 1 —_
Rz,zqux,zui+Eri(x,12)R12,zu+ri(x1,2)R2,lzu (93)
and )
Rzz, ulZRa:z,ui+_ri(x)ﬁ)R12z,'u+ri(xT7§)R22,1ua
2

(20<wo), (94)

with a similar property of the R¢ functionals as in (72).

From (89), (90), (93), and (94), equations similar to
(77) and (78) can be derived. The result is that in both
equations the coordinate 2 is to be omitted, and the
replacement 1 — x, x — 2z, y — u to be made. There is
no essential change in the definition of the irreducible
brackets.

Finally, we define a functional R. ,* by

1 __ -
R:,y=R,,,,i-i—iri(x,lZ)Rm,,,'—i—ri(xl,Z)Rz,l,,

1 .
=R,,yi+57(x,12)R1§,yi+r’(xl,Z)Rﬁ,f,,i, (95)

(to be used at least once differentiated), where Ry, ¢ is
defined by an equation similar to (89). With use of the
foregoing results for the other irreducible functionals,
r:(x,y) can be shown, by the usual method, to satisfy an
equation that arises from (77) by the replacement
1— 9, 2 and y omitted, the left-hand side being linear
in the “remainders,” corresponding to ¥, Z, ¥, Z in
(77), (78), (86), and (87), of the functionals with three
coordinates.

4. MANY-PARTICLE STRUCTURE

The analysis of the two-particle singularities is in
principle extendible, in a straightforward way, to higher
singularities. The general type of an # particle singu-
larity is, with z=p2— (um)?, (—2)®"972 if n is even,
and (—2z)®m92In(—3z) if » is odd, for the case of
m2>1 retarded and #—m A,/2 lines on the cut. The

" terms with as well retarded as advanced lines are

not singular, but must be separated out also. The
factor in an ansatz similar to (60) of a term with
m retarded or A;/2 lines and n—m advanced lines is
[m!(n—m) T 'R1...5 7t T.oizwen- = Since, however, the
calculations are expected to be, until a simpler calculus
is found, considerably more lengthy than in the two-

/

F16. 11. Analysis of (R, :u), Egs. (95) and (90).
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particle case, but not to present any other difficulty, we
take it for granted that the result will be analogous to
those of the last two sections.

Rather, we would like to show what such results,
together with those of the foregoing sections, do imply.
Let us insert (42) and a similar equation for (x1,2) into
(89). This leads to the equation described, together with
(93), by Fig. 11, where we draw all lines equal, a sum-
mation over all distributions of lines and earliest
vertices compatible with the external ones being under-
stood, and only functionals that are one-particle irre-
ducible with respect to the exhibited coordinates (but
not yet necessarily with respect to pairs of coordinates)
are meant by circles and ovals. The symbol ; and the
broken line indicate the two-particle irreducibility con-
dition for the fourpoint and threepoint functionals.
Separating out the one-particle irreducible part in the
first four pointfunctional leads, as one can show, to
Fig. 12, which upon neglect of the last term and setting
J equal to zero describes a well-known nonlinear integral
equation for the threepoint function, the irreducible
function, and the twopoint function being considered
known. For the irreducible functional, integral equa-
tions of the type shown in Fig. 13 will hold.

One easily sees that one can reproduce the perturba-
tion theoretical structure in any detail with, however, a
few important differences:

A. One never arrives at a bare vertex. All vertices
are still retarded functionals (or, with J=0, functions)
with certain irreducibility conditions in the sense ex-
plained in the last two sections. Formally, in quantum
electrodynamics, a vertex that is two-particle irreducible
with respect to any external line is necessarily a three-
leg point, such that Fig. 13 reduces to a triviality. How-
ever, this is not really so because of the need of sub-
tractions in defining the real part from the imaginary
part whose decomposition decides the irreducibility test.
In the next section we shall give arguments why we do
not expect a subtraction to be needed in the present
scheme, in contrast to perturbation theory. Instead, in
this scheme arbitrarily highly irreducible vertices will
exist when it is formulated for quantum electrody-
namics. Thus, the freedom gained in the present more
general formulation leads at first to the loss of an
understanding of the absence of an intrinsic anomalous
magnetic moment of the electron. We hope, however,
that future study of the consistency of these systems of
equations will clear up this point. (See also note added
in proof.)

Fi16. 12. Further analysis of (R, su).
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F16. 13. Analysis of (R, ..%).

B. One can understand the structure revealed by our
analysis as originating from partial summations in
double (as in Feynman) graphs containing bare vertices
with an arbitrary number of legs.* One easily convinces
oneself that if one tries to cast the essence of the
structure of such graphs into drawings without drawing
a potentially infinite number of lines as they were
needed in depicting Schwinger’s functional differential
equation (22), one necessarily arrives at the drawings of
generalized Bethe-Salpeter structures shown here, which
differ from drawings of Schwinger’s equations?® by the
replacement of bare vertices by higher irreducible ones.

Thus, the present scheme leads, upon iteration of the
procedure of picking out reducible parts as in the ex-
amples of Figs. 12 and 13, to a “structure expansion”
with a definite similarity to a perturbation theoretical
expansion; the bare vertices, however, are replaced by
“causal form factors” related to, but more general than
the self energies and vertex parts of the renormalized
expansion. Causality is preserved since these “form
factors” are again r functionals, merely with an irre-
ducibility condition.*” This condition has, in a broad
sense, the effect of rendering these form factors the less
extended in space-time the higher the irreducibility, be-
cause of the absence of the low masses in the spectral
decomposition of the absorptive parts; that is, of the
functions obtained by omitting certain step functions.
This effect is seen at the well-known spatial decrease of
the vacuum expectation values of ordinary field operator
products, which is exponential with a range derived
from the lowest masses in the intermediate states,*® and
at the then more rapid oscillation in timelike directions.
Thus, as far as low-energy phenomena are concerned,
the highly irreducible vertices act similarly as point
vertices with, however, a high-energy cutoff, as was
already made use of at the beginning of Sec. 3. We shall
come back to this important point in the next section.

46 See, e.g., B and S, p. 430; and R. Utiyama, S. Sunakawa, and
T. Imamura, Progr. Theoret. Phys. 8, 77 (1952).

47 It should be clear that these form factors have as little to do
with the form factors of a nonlocal theory as the vertex part, or
any generalized vertex obtained by partial summation, of a
renormalized local theory has.

8 R. Haag, Phys. Rev. 112, 669 (1958). See also G. F.
Dell’Antonio, P. Gulmanelli, Nuovo cimento 12, 38 (1959); and
H. Araki (preprint).
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Conversely, perturbation theory can be looked at as
a degenerate structure expansion. This view would ex-
plain its moderate success in certain applications even
to strong interactions as, for instance, in pion-nucleon
physics,® however, more recently described as “polo-
logical.” The difficulty one would encounter in quantum
electrodynamics has already been mentioned, however,
one could also think of pecularities of this very special
type of interaction.

Finally, we would like to repeat that in spite of their
irreducibility, vertices in the generalized graphs may
have any number of external coordinates. Especially, by
taking functional derivatives, an arbitrary number of
lines external with respect to the whole functional that is
analyzed will be set free.?” Of course, setting J=0 gives
ordinary graphs, whereupon, for instance, the squares in
Fig. 12 reduce to Ag.: -functions.

5. STRENGTH OF SINGULARITIES

In the last two sections there appear various integrals
that at first sight seem to diverge. Actually, all integrals
would do so for J=0 in renormalizable perturbation
theory, startmg at (60). In order to grant these expres-
sions a meaning, an 1nvest1gat10n of the behavior of the
functions at high momenta is necessary.

One-Particle Propagator®

First note that Age.:’ is restricted only by (49), which
serves as its definition, and not by (95) because of (37).
In all formulas except (49) Are’ is considered known.
Let us rewrite that formula more explicitly as

—Ax' (x—9)+Aget (x— )+ A(x—y)
= ffdx’dylARet, (x— 2" )II(Z' — ) Aget’ (y— "),

where II(Z'—¢') is a real odd function. By Fourier
transformation we obtain

—An (p)+Bred (9)— %Wif (?0)55P2 _1”2)
=2niAre (P)I1($7)Bav' (p)e(po), (96)

where T1($?)% is real, vanishes for $2<4m? up to Dirac
_delta functions, and is nonnegative for $*>4m?.
Actually, in the axiomatic scheme, the primary
quantity is not T1(p%), but

(%) | Bred' (p) |2=p(2"),

though it might be the other way round in a scheme to
solve the whole system (48). Thus, the actual definition
of T1(p?) will depend on Age’(p). According to Hall and

7

# See, e.g., R. E. Marshak, Meson Physics (McGraw-Hill Book
Company, Inc., New York, 1952)

% The followmg analy51s is mainly a generalization of that of
footnote 8.

& 25 T1(#) is identical with the function F(— p?), the absorptive
part of Dyson’s proper self energy part, of footnote 8.
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Wightman,® A’ (p) =Aa.'(—p) is a function of p? and
the boundary value of a single function f(z), which is
analytic in the cut z=p? plane apart from.a pole at
z=m?, on the upper or lower side of the cut, respectively,
if 020. Equation (96) can be rewritten

f(x+10)— f(x—10) = 2xid (x— m?) + 2mwif (x— 4m?) p ().
The function f(2) can be defined by

® et -
[
4m? I—3
in the usual way, if this integral exists. Then f(z) has
positive imaginary part in the upper z half plane,
vanishes in infinity in every direction not parallel to the
positive real axis, and vanishes at most at one real point
xo between m? and 4m? and at a possibly infinite number
of real discrete points x,,>4m v=1.... At these zeros
the real part of f(x) will have positive slope and the
function II(«x) will be defined only up to a delta function
with positive coefficient.®
If the integral in (99) does not exist, subtractions®
will be necessary in order to arrive at a definition of f(z).
These are, for our purpose, most conveniently carried
out by defining

fl@&)= (99)

me—z

=@ t=g@)0@,  (100)

l=1m — X1

where the x; are real and between 0 and m?. By using
(100) in (98) we obtain as a possible definition of f(z),

f‘” i p(t)

| oy
o) (t—Z)]

m>m4

m2—z

where the bracket g(z) has the same properties as (99).
Because of the above choice of the zeros of Q(z), the
amputation defined in Sec. 2 and often used later re-
mains a well-defined operation, since at all those zeros
the retarded (or advanced) boundary condition, whose
observation was always implied, gives a unique defi-
nition. (See, however, note added in proof.)

The exceptional case is (49) or (96) itself, if not p(p?)
but 11(?) is considered the primary quantity. We shall
show in the appendix that if we do not permit nonCDD
zeros, we have the representation

fo=Ge—ar| B+ [ LU
- Jamr (1—2)(t—m?)
+Z—-—Ci——]._l, (102)
(xx—Z)(xx—m’)

2D. Hall and A. S. Wightman, Kgl Danske Videnskab.
Selskab, Mat. Fys. Medd. 31, No. 5 (1957).

% For a thorough discussion see L. Castillejo, R. H. Dalitz, and
F. J. Dyson, Phys. Rev. 101, 453 (1956). We shall refer to zeros
with these properties for brevnty as CDD zeros.

% See, e.g., B'and S, p. 587.
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where B is real nonnegative, the x\ are real, the C\
positive, and

N ﬁ(l) Cx
B+ f dt + =1. (103)
am: (f—m?)? (xr—m?)?
Comparison with (99) gives
Bi=1+ f p(0)dt.
. 4m?
If B=0, we obtain
© [1(t)dt a7
f&)— [ ) +5 ] (104)
am2 t—m? 1A—m?

if 2 — o, such that in this case, if (99) should apply, the
sum, or integral, or both, in (104) must diverge, since
otherwise in (99) a constant corresponding to (104)
would have to be added.
Thus, unless
® TI(¢
1 ) (105)

4m?

there cannot exist a representation of the type (99). If
I<1, one may choose a finite B, or CDD zeros, or both,
such as to satisfy (103) and to make (104) vanish if we
decide for B=0. f(z) is defined by (102).

We shall show in the appendix that if 7>1 but
11(#)=0(¢) in infinity, one might possibly find, in any
case if TI(f) vanishes stronger than any negative power
of ¢, a subtracted form of f(z) that belongs to that I(¢),
by choosing sufficiently many nonCDD zeros. If, how-
ever, I does not exist there is no way to define a function
f(2), with only polynomial growth in infinity, that gives
11(¢). This is the irreparable “ghost” situation.

The “normal” situation is that considered before,
namely J<1. We saw that if (99) should hold with I=1,
the integral and sum together in (104) will diverge,
which means that in (49) we cannot obtain Age”’ (T—9)
by multiplying (49) by 8(x—7), but that one subtraction
is required. Actually, the data for two subtractions are
available, as insertion of (103) into (102) shows. This
is the situation in renormalizable perturbation theory,
where I1(f) increases in infinity like #(Inf)*, x>0, and
(102) is not applicable. We find that permitting sub-
tracted forms of f(z) does not help here.

If I<1 there are various choices for unsubtracted
f(2), as (103) and (102) show. The former conclusion on
the stepfunction multiplication only holds if we decide
for B=0, and the divergence of (104) is not due to CDD
zeros, which, however, can hardly be expected to be
separable from the IT(f)-determination.

Other Functions

The finding that for a consistent theory of the type
considered in the axiomatic scheme, the strength of the
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singularity of an Aget-amputated function is less than
in renormalizable perturbation theory is of great in-
terest. Whereas we can prove it only for the absorptive
irreducible part of the propagation function itself and
for the vertex function with two momenta on the mass
shell,® we conjecture it to be true for all functions. This
would imply that for the vertex function where in
perturbation theory, independent of Aget- Or Aget-
amputation, one subtraction is necessary, in our treat-
ment no subtraction would be required,’ and that all
Agei’-amputated functions could be obtained®® from the
absorptive parts by multiplication of (48) by the step
function.

Let us relate these considerations to renormalization
theory. Consider, for instance, the usual pseudoscalar
meson theory with, among others, the coupling term

gu\LuyS‘ri‘pu(ﬁui

in unrenormalized, or
Z g rysT by
in renormalized quantities, because of
Vu=2Z¥,, ‘pu=Z2i';r, dui=2Z3¢, 0 g, =277 g,.

Arguments®” can be given for the validity of the Born
approximation at high energies. For the vertex part the
Born approximation is obtained by taking in

fdu< T‘/’r(x)&r(y)‘#'i(z)Zlgr‘;rCu)'Ys'r i¢r(1¢)¢)ri(u)>
th.e disconnected part, which gives
Zlg,fduSp’ (x—w)ysmiSF (u—y)Ar (u—3).

Thus, the amputated vertex behaves like Z;g,vs77 in
infinity, which also holds if two of the particle momenta
are on the mass shell, the third one going to infinity.®
Comparison with the results on the meson propagation
function® shows that Z;=0.% We thus find that the
Axret-amputated vertex function goes to zero in infinity

55 A similar conjecture has been brought forward by G. F. Chew,
UCRL-8194, in connection with the electromagnetic structure
problem of the nucleon.

8 This was suggested to the author by F. J. Dyson.

57 G. Killen, in ‘“Quantum electrodynamics,” Encyclopedia of
Physics, Vol. 5, part I, p. 302 (Springer Verlag, Berlin, Germany,
1958); CERN 5?—43. See also K. Symanzik, Nuovo cimento 11,
269 (1959).

5 Note that use of a dispersion relation for the vertex in a form
that is proven (e.g., in the meson-nucleon vertex keep a nucleon
momentum off the mass shell) gives a definition for Z, similar to
the well-known definitions of Z,, Zs, and the self masses in terms
of integrals over spectral functions, e.g., H. Lehmann, Nuovo
cimento 11, 342 (1954).

® In quantum electrodynamics, because of Ward’s identity, this
leads to Z»=0. This argument has been used by G. Killen,
(footnote 57), to identify one vanishing renormalization constant
in quantum electrodynamics if one adheres to Dyson’s perturba-
tion-theoretical renormalization scheme, but does hot use the
expansion in powers of the charge.
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also when more than one momentum is off the mass
shell, in accordance with the conjecture described above.

On the basis of that conjecture, we can argue for the
existence of the integrals of the last two sections. Since
they are at most logarithmically divergent in perturba-
tion theory, they will become convergent since the gain
in convergence discussed above for the vertex, which is
at least by powers of logarithms can be expected
sufficient.

It seems that the arguments collected here lend sup-
port to the view that the strength of singularities in
renormalized perturbation theory is an upper bound,
which is, in fact, not reached by a rigorous solution of
the axiomatic scheme, at least as far as the Ag./-
amputated functions are concerned. The singularities
(or vertex divergencies) in perturbation theory seem to
be characteristic to that method, which is strict in
locality but loose in unitarity.

6. OUTLOOK

The results of the foregoing sections can be utilized to
amend present methods to derive analytic properties of

!
H

~

F16. 14. Analysis of the scattering amplitude
A+A4 — A+A+ae+a.

observable quantities because structure analysis permits
use of locality and the completeness condition more
efficiently than techniques presently available do.

This is most easily seen by comparison of field theo-
retical proofs of analytic properties of scattering ampli-
tudes with proofs for potential scattering. Lehmann’s
proof® of cosf-analyticity for fixed total energy gives as
analyticity region an ellipse, which is analogous to the
ellipse obtained by Khuri® for potentials that are local
and decrease exponentially, but are not restricted other-
wise. Blankenbecler et al.% have shown that the initial
ellipse can be successively enlarged, if the potential is a
superposition of Yukawa potentials, by iteration of the
integrated Schrédinger equation, whereby the Born
series is generated.

We may compare the Schridinger equation to the
inhomogeneous Bethe-Salpeter equation of Fig. 7 and,
especially, Eq. (69). Actually, the ladder approxima-
tion of the Bethe-Salpeter equation was originally pro-
posed by Nambu® as field theoretical analog of the
Schrédinger equation and is known to lead to it in the
nonrelativistic adiabatic approximation. In Lehmann’s

% H. Lehmann, Nuovo cimento 10, 579 (1958).

® N. N. Khuri, Phys. Rev. 107, 1148 (1957). See also S.
Gasiorowicz and H. P. Noyes, Nuovo cimento 10, 78 (1958).

 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman (to be published).

83Y. Nambu, Progr. Theoret. Phys. 5, 614 (1950).

SYMANZIK

\ /! A
Y= 30+ o + Yo,
i | i
Fic. 15. Analysis of A+A — A+A, Eq. (106).

proof® of cosf-analyticity, the “Yukawa-type” nature
of the “potential,” namely that it is originated by the
causal interaction of particles with known mass spec-
trum, is used only once, comparable to terminate the
iteration mentioned in the foregoing with the first or,
for the absorptive part, second Born approximation.

As far as the dispersion relation for fixed momentum
transfer |A| is concerned, for limited |A| the irreducible
term in Fig. 7 has zero absorptive part in the unphysical
region |w| < (m?*4A2)}, as follows from (77) with ¥i=0,
and therefore obeys a homogeneous dispersion relation.
The reducible part, however, must be analyzed on the
basis of its structure. Since it resembles, in its iterated
form, a perturbation theoretical graph with, however,
vertices of finite but, in comparison with the reducible
functions, reduced extent (if, for instance, a further
analysis like that of Fig. 12 is carried out), it can be ex-
pected that techniques developed for proofs of analytic
properties of Feynman graphs can be adapted to the
present situation.

In the case of meson-nucleon forward scattering,
Zimmermann® has shown that already separating out
the one-nucleon reducible part permits proving the
dispersion relation and identifying the coupling constant
in a simple way.

These considerations, together with the remarks
about a possible interpretation of perturbation theory in
Sec. 4, might lead in the direction of Landau’s® recent
method. The method proposed here has in common
with this at least that all stable particles, without a
distinction between ‘““simple’” and “composite” ones, are
treated equally. Here, this is clearly based on Zimmer-
mann’s® technique of ascribing local field operators to
all stable particles.

This leads us to the question why it is obviously
sometimes advantageous to treat an unstable particle
like a stable one, since a neglect of the decay interaction
cannot be spoken about when bare interactions do not
appear at all. A justification is desirable because even
apparently stable particles might be unstable with a
long lifetime.

Of course, we are not in a position to give anything
else than a very crude qualitative argument. Assume a

XX+ Y+ Y,

F16. 16. Analysis of a4a — A+A4, Eq. (107).

8 W. Zimmermann, Nuovo cimento 13, 503 (1959).
86 I.. D. Landau, Nuclear Phys. 13, 181 (1959).
8 W. Zimmermann, Nuovo cimento 10, 597 (1958).
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model® with stable particles 4, antiparticles A, and
lighter stable particles ¢, and antiparticles d, and as well
A- as a-conservation. The scattering amplitude 4+4 —
A+A-+ae+a can be structure-analyzed as shown® in
Fig. 14, where ¢ denotes one- and two-particle irre-
ducibility. Furthermore, the integral equations de-
scribed by Figs. 15 and 16 are written symbolically as

X=X+XX+Y,7V (106)
and

V=YV +V.X+Z7, (107)

respectively, where integrations over the relative co-
ordinates are implied. If Z; can be neglected, we obtain®

Y= Y,L[l—Xz—' Y,'Tyi]_l
=V,(1-X, P [1-V.7V,(1-X)1 ],

which gives the final-state interaction in the middle
graph of Fig. 14. If at some momentum in the energy
region between 2m 4 and 2m, X ;, being there a hermitian
operator, having (for instance in the zero angular mo-
mentum channel) the eigenvalue one, with ¥,7V; being
there a small but, of course, nonhermitian operator, a
resonance, giving rise to a clean decoupling of the pro-
duction and the decay process, will appear. To a pair of
two a-particles in strong correlation to each other in a
large timelike distance only this resonance, phenomeno-
logically described as an unstable particle, will give a
measurable contribution.

It is clear that the consideration given here for two
end lines also applies to a pair of interior A4, A-lines
(more precisely, an interior fourpoint vertex) though the
advantage of using the unstable particle as a substitute
for that pair will be limited to certain energy regions.

The explanation given here is not new and does not
give a hint why resonances that are actually observed
are so sharp. However, from a fundamental point of
view a hierarchy of interactions, strong and weak ones,
is not much easier to understand.

The structure analysis as presented in this paper is an
off-shell formalism. We expect that it will be possible to
reduce it, by dispersion-theoretical methods, at least
partly to an on-shell formalism. It seems to us that on-
shell methods, being beset with the problem of un-
physical and high-energy regions, can only be understood
and adequately handled with a prior comprehension of
the underlying off-shell theory, unless a direct approach
to the causality problem of the .S matrix has been found.
Moreover, the technical difficulties of unphysical regions
might in some cases become so unwieldy that a complete
reduction to the mass shells is no longer advantageous.

%7 We do not choose a more realistic model in order to avoid the
impression of an allusion to a quantitative applicability of the
following reflections.

% The circles denote functions and not functionals. The same
simplification as in Figs. 11, 12, and 13 with respect to lines and
earliest coordinates are made.

® The less simple considerations of Sec. 3 in a similar case are
not needed here.
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APPENDIX A

Elimination of the Two-Particle
Reducibilities (Section 3)

We insert (68) and (60) on the left and also on the
right-hand side of (44), always exhibiting the reduci-
bility between «, ¥ and 2z, % nearest to x if there is any.
The result is

_ 1 . _ -
(R::, yzui>+5"i(x;y12)<R12,zu>+ri(x1 ;y2)<R2,lzu>

—%r(z,ulzxkﬁ.,m—r(zl,u2)<Rf,u,,f>

= iRz, pu',R-D+H[RsuRz0 D)
+§[([Rz,yi,wa1>+<[Rz,Rﬁ,/]>]r(z,u12)
+il([Rx. R 1] ([ Rx,Ra.1, 1) T (1,2)

1 —
+§' (2,912)([R12,R. Ju)
+iri(xi7y§)<[R2,17Rz]">1 (Al)
where all one-particle reducible terms are neglected.
The first two brackets on the right-hand side (rhs) of
(A.1) have the property ¢ defined in Sec. 3. For such

brackets we define the operations [ ]°and { }* by the
integral equations™

1
([Rz.yui;Rz:D =5<[Rx.yii:Ri:lix{Rl.u,Rz,?})

1
+5<{R z,ufiyRi} i)([Rl.uyRZJ:D; (A-Za)

1
<{Rz.y“i1R2}c> =5<[Rz. z/Ti)Rf] i)([Rl.u)Rlﬁ:D

1
+§<{R$.Uii:R2} i><{R1.u7Rzy2}>7 (A2b)

% The index ¢ of the anticommutators denotes the connected
part, obtained by subtracting the disconnected part, which is, e.g.,
AR, MR for (A.2b).
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1
([RZ-WRZ»U:D = §<ER E.T)Rf, y] i)({Rl.uaRz.2}>

1
+5<{R=,TJR§,1/} i)<[R1.u)Rz,2]>; (A3a')

1
<{R=,uaRz.u} c) =E<|:Rz,T,R§. v] i)([Rl.uxRZ.2]>

1
+E<{RI,T)R‘A_’>3’} i)({Rl‘u;R2.2}>J (Asb)

which correspond to Figs. 8 and 9, since for two
operators A, B that commute with the operators C, D
the equations

1 1
[AC,BD]=5[A,B]{C,D}+5{A,B}[C,D] (A.da)

and . )
{AC,BD}=§[A,B][C,D]+E{A,B}{C,D} (A.4b)

hold. The structure of (A.2) and (A.3) is very similar to
that of (68) and (70). We defer the discussion of (A.2)
and (A.3) to the end of this appendix.

The brackets in the third and fourth term on the rhs
of (A.1) do not yet have the property 4, since they
contain Ry instead of Rys* etc. By using (72) we write

([R.. Ris'])

1 D ey = -~
= ‘2‘<[Rz.ui, (RsR9) Dr:(12,30)+([R..,',Riz"])
1
= ([R-.' (RsR0)Dri(12,34)
1 5 —
+5<[R"”3i’Rﬂ H{Rs,Riz,4'})

1 >3 —-
+E<{Rz. v3 irRz} i><[R37RT§,4i:|>
+<I:R=,yi;RI§i]i> (A.S)

and

([R:)R12,,'])

1 o ~
= E(ER - (RsRq) y])’i(12>34) +<[R +Ri3,, )
1
= 5( [R zy (RﬁRZ) ﬂ:])r b (ﬁ)34)
1
+E<[R=,37R1. u]ix{R%RﬁAiD

1
(R e3.Re.) HRs Rrs.i'D)

+<[:Rz7RT§, y i] i): (A-O)
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where the last terms in (A.5) and (A.6) are defined by
these equations, since the other irreducible brackets
have been defined by (A.2) and (A.3). The meaning of
the terms separated out first is explained by

8 )
<[R z,y iy (R3RI)]> = <R z,y i) (exp[ §K1A+ng*]

“exp[;}K(—iA_)K%])@EXRO

with differentiations as in (43), as follows from the
sense in which (72) was understood. The differentiations
of (R, are contraction differentiations and as such
again defined with the help of (72). We shall see later
that ((R.,Rz,1,"]) and ([R, .}, R,]") are closely related.
The brackets in the fourth term on the rhs of (A.1) are
obtained from (A.5) and (A.6) by the replacement
Riz*— R y".

Equations (A.5), (A.6), and the two equations just
described give upon use of (60), (72), and the equation
for R3 1 corresponding to (72), for the sum of the third
and fourth term on the rhs of (A.1),

%mx.,,si,Rsz>+<[Rz,s,Rz,yjf>]

.
><[«Ra,R,,M»—-a&,<R5Rs>4}>-r<z,use>]

2
+§[<{R,,uzf,kz} Y+((ResRs4) )]

1
X[([R?':Rz,w])“’E([Rs;(RSRG)4]>’ (Z,%56)]
+124[<[Rz,,f, (ReRe)])-([Rey (ReRe), )T (z,34)

+;[<[Rz,yi,RfffJf>+<£Rz,Rn.mjiﬂr(z,mz)

+i[<[ﬁx,yi;EE.Ti]i>+<[RZ7R§,Tyi]i>]r(21au2)- (A7)

For the terms containing the products RsRs or R3R,
we define in the usual way,

([Rz.y',(RsRs)])
1
= quRz' w35 R ) X{Rs,(ReRs)4})

1
+((Res’ Ra) WL R, (RsRs)o )

+([R...",(RsRs)]") (A.8)
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and

<[R zy (RBRG) v])
1
=§([R =.5Ra,, ]){Rs,(R5Rs)4})

1
+5<{R,,5,R;, o} N[ Rs, (RsRs)eJ)
+([R.,(RsRs),]") (A.9)

since the lhs brackets have, because of the amputation
of the one-particle reducibilities (after the commutator
has been worked out, of course), the property 9. The
other irreducible brackets have been defined in (A.2),
(A.3). The interpretation of these decompositions
follows the pattern discussed at the end of this appendix.

The remaining parts of the first two terms of (A.7)
can be combined with (A.2a) and (A.3a), whereupon the
last brackets change into ({R3,R:,s}.) and ({Rs,R. <),
respectively.

For the coefficient of the penultimate term on the
right-hand side of (A.1) we have from (19) and (18)

iERlz,RzJu=R12, au—Ri: 00— Roe 10
1 1
+5{R1,2,Rz}u+2_{R2.1;Rz}u, (A.10)

whose first term cancels, upon insertion into (A.1), the
second term on the lhs of that equation. For the last
term in (A.1) we use (18) and obtain

iERZ.I;Rz]u:‘ R2.lzu_’Rz,21u_ ’I:[R2,Rz,1] u (A 1 l)

whose first term cancels the third term on the lhs
of (A.1).

We now define X¢ by (76), which was set up in
analogy to (A.10) where, however, a moment’s thought
should be given to the terms containing RyR,. They
arise from the need of adding to, e.g., ({Riz' Rz ;']
those terms where, before the irreducible commutator
was worked out, the first factor was disconnected be-
tween 1 and 2. Without that term, the full analogy
between (76) and (79) would have been spoiled since
R,,* contains only between 1 and 2 connected terms, in
contrast to R;s. This also explains why such additional
terms do not appear in ¥, ¥, Z, Z, but do in U. All
irreducible brackets in (76) have either already been
defined earlier, or are defined by the anticommutator
equations analogous to (A.5), (A.6), etc. When (76) is
used in the penultimate term of (A.7), the first term on
the rhs of (76) cancels the fourth term on the lhs of
(A.1), and the second and third term cancel the second
term on the rhs of (A.11).

If (76) would have been written with unamputated
1, 2, X would have little chance to vanish because on
the rhs 1 and 2 occur in varying positions, and the
conversion of retarded into advanced end reducibilities
would have given additional terms.
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If we furthermore use (77) for the last term in (A.7),
the first term on the rhs of (77) cancels the last term on
the lhs of (A.1), and the second term cancels the second
and third term on the rhs of (A.10).

Let us collect what remains of (A.1) upon insertion of
(A.7) to (A.11), (76), (77), (A.2a) and (A.3a),

Rz oy = g[([ﬁz, vibRe))+H([R.1,Rs,,]7)]
LURLR. 2} u)—2r(21,u2)]
L Ra R {(Rat R} 1]
X([Rl,R,,z]u>+%n(%yﬁ)({Rl.2»Rz}u>
Fird(oT,y2) Rz RsTu)

1
—El:({Rz,Rr,fu"} VH({(Ran' Rez) ) Ir(zu12)

1 —
+5Xi(x12,y)f(z,u12)

+Vi2x,1y)r(21,42). (A.12)

In the third term on the rhs, we have from (77)
rixy12)=r22y1)+i[R., " Re1]")
+i<[RzyR-§.T.u z] i>+i<[R1,LR‘§. 1/] i>
+i([Rz 1" Ra])~Yi(2x,1).

The first three terms on the rhs do not contribute in
(A.12) because of the inverse time order of 1 and 2 in
the two factors.” The fourth and fifth term cancel the
first term on the rhs of (A.12). In the fourth term on the
rhs of that equation we use (78), all irreducible brackets
of which have been defined earlier. The second and third
term on the rhs of (78) cancel the second term on the
rhs of (A.12), whereas the fourth and fifth term combine
with the fifth term on the rhs of (A.12) to give a
coefficient

(R, 1,Re]u)—7(2,u12) = i{[R.,R5,1] ),

which results in a vanishing term due to inverse time
order.” Taking account of (72) and combining with (19)
the coefficients of ¥* we are left with (80).

The Egs. (81), (82), (83), (88) are obtained in a
similar way, where also (20) and (21) have to be used.

Let us discuss the operations [ ] and { }‘ defined in
(A.2), (A.3), (A.5), (A.6), (A.8), (A.9), and analogous
equations. As an example we chose (A.3) and form by

™ This argument only holds, of course, if the factors are not too
singular at equal times. On the basis of the conjecture of Sec. 5,
concerning the possibility of multiplying (48) with the step func-
tion 8(x—y), it can be shown that the argument of the text is
correct.
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linear combination

(RI- uRZ, y>c= <(R:;,1_R§,y) ile.uRz,Z)

<R=.uRz,u>c= <(R‘Z. sz.T) i><Rz,2R1.'u>,

whereof we need only consider the first relation.
From (39) and (41) we have

<R z, ul> = <R z,Tisle, u>EA M

(A.13)
and

and )
(Rey)=(Rz,,"XR.)=A"M".

By keeping in mind (43), which was a consequence of
(14), we rewrite the lhs of (A.13) symbolically as

(Ra,uRz o= (@@ ) N AMA'M',

where the small greek letters indicate differentiations of
the capital symbols, integrations as in (43) being under-
stood, and ¢ means ‘“connected” as in (A.3b). By
rearranging the rhs we obtain

(Re,uR: e
= (e* —1)AA - e MM’
e (e — 1) (e — 1)+ (e* — 1) (e — 1)
+ (e —1) (e='v—1) 4 A e MM’
44" (e ~ ) MM +[A (e~ 1) 4’

+A' (e —1)AJe MM'.  (A.14)

The first term is the first contribution to the rhs of
(A.13), namely when both factors in ((R.,iR:,,)%) are
one-particle irreducible. The second term involves
“crossing” and necessitates a further splitting of M, or
M’, or both:

M—BM, M'—B'M', p—B+tu, u —g+u.

The factor e**’ MM’ always remains and gives the factor
(R;,uR:,2) in (A.13). There are terms that upon these
new splittings do not involve “crossing differentiations”
of M or M', and thus immediately contribute to
((RziR.3)%. The terms that involve crossings are
treated in the same way in the next.step. The two re-
maining terms in (A.14) produce the one-particle
reducibilities at one line, or at both lines, respectively,
and are furthermore treated as before. Especially, the
penultimate term has, apart from the factor A4’, the
same structure as we started from.

We thus see that (R, iR.3)’) never gets a two-
particle reducible contribution, and that the factor is
always (Ri,.R.3). One can also show that both end
lines become 1+A4+AB+ABC+--- and 1+4'+A4'B’
+A4’B'C'+- - -, respectively. Not only these expansions
break off in any finite order of J, but also the entire
expansion of ((R.iR.3? for any finite momentum
transferred, as was remarked in Sec. 3.

Still some more summations can be carried out. On

SYMANZIK

using the formula

Ki.v= 2 2 (Umn!-- )

perm part
-(A+K)Ky.  (AHK)K gy gm (1K)
‘Kapminyopmin A+ K) - K.y (14-K)

derivable from (14K)(1—K?)=1, where the indices
mean functional derivatives, the partitions are those
that give N=/+m+n+---, with I, m, n--- natural
numbers, and the permutations are the V! of the indices,
one can show that ((Rz1,Rz,;)?) has the structure shown
in Fig. 10 as explained in Sec. 3. The difference between
the expansion obtained before and the final one just
discussed is that in the latter all alined undifferentiated
one-particle irreducible parts on the two chains have
been summed up. We omit the strictly elementary, but
tedious inductive proofs of these statements.

All other irreducible brackets, including those in-
volving (R3Ry), can be similarly obtained in an explicit
form. This way it is also found that, e.g., ((R,Rs,1,%]%),
as defined similarly to (A.6), and ({R:;.%R.]"), as
defined by (A.2), become identical upon renaming the
indices.

We have here obtained ((R;,zR:,,)?, etc. by explicit
construction. However, this does not necessarily mean
that the solutions of (A.2), (A.3) are unique. If they are
so, it will be possible to write them in a form that is
analogous to (75), due to the nearly identical structure
of (A.2), (A.3) with (60) etc. From such a form, together
with the similar formulas that are then derivable for the
other irreducible brackets, it can be proved that the
sum of the brackets on the rhs of (80) has the same
retardedness properties as the irreducible functionals
have as was mentioned in Sec. 3.

APPENDIX B

One -Particle Propagator with nonCDD
Zeros (Section 5)

Assume f(z) to have nonCDD zeros. These will be
zeros at points z,, Z,, Imz,>0, »=1---N, and zeros on
the various parts of the real axis. Those real zeros where
the real part has positive slope were classified as CDD
zeros, so the nonCDD zeros will give negative slope.
Both types of zeros can coincide to give zero slope but
will, in general, lie apart. We count every zero as often
as its multiplicity requires. The real nonCDD zeros will
be at x,, u=1---M. We define

N z—z,

f@=f 11

v=1m?—3z, m*—Z,

2—2,

M [ — %,

XII

w=l \m?—x,

)eﬂ@P@,(Rn
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where NV and M can be assumed to be infinite™ but will
actually turn out to be finite since at most a polynomial
increase of f(z) in infinity is permitted. f,(z) has only
CDD zeros and at the x, poles with negative residuum.
From (97) and (98) we obtain

Im(— fr(2)™) | cmzp0i= 7L (%) P(x).

— f+(2)7! is analytic in the upper 2 half plane and has,
because of P(x)>0, nonnegative imaginary part (in-
cluding possibly delta functions with positive coeffi-
cients) along the real axis. A theorem on such functions”
says that Im(— f,(2)™") either is positive in the upper
half plane or goes at least linearly to ~ <« in some direc-
tion. One easily proves that this leads to zeros of
— f+(2)~! excluded by our construction of that function.
Therefore the former statement holds and allows to use
the representation™

+oo
—f,(—z)—1=A+Bz+f

(B.2)

1+2t
do (1)
t—3

with 4 real, B real nonnegative, and ¢() a real non-
decreasing measure. The condition f,(#?) =0 allows to
rewrite this as

— fr(8) = (z—m?) B+ (2—m?)
or, with the help of (B.2),

e (14-2)do (1)
—0 (t— Z) (l_m2>

= TOP@)

~[(&)7' = (z—m*) B+ (z—m?) Ay— !

+(z—mHLZ (B.3)

(or—2) (ma—m?)

2 In this case the convergence of the products follows from the
at most exponential growth of f(2) in infinity, its reality for real z,
and properties of Blaschke products, see, e.g., R. Nevanlinna,
Lindeutige Analytische Funktionen (Springer-Verlag, Berlin, Ger-
many, 1953), Chap. VIL.

% This is an adaption of the Phragmen-Lindelsf theorem, see
footnote 72, p. 44.

% See, e.g., J. A. Shohat and J. D. Tamarkin, The Problem of
Moments (American Mathematical Society, New York, 1943),
p. 23.
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where x>0 and x, are CDD zeros. The condition
(m*—2) f+(2) | s=m*=1 gives

© TI()P(L Cx
+f @ ()dt+2

mt (t—m?)?

=1.
(ex—m?)?

(B.4)

Equations (B.3) and (B.4) give (102) and (103) if
nonCDD zeros are absent, i.e., P(¢)=1. The behavior of
f(2) in infinity is

f(z) - P(z) . (mz— z)‘l.B—l
and if B=0
= T(H)P(t)dt C, T
f(Z)ﬂP(z)[f PO | <. 2]
! Xo—m

m2 (t—m2)

if B0,

if the sum and integral exist, or
= TI()P(t)dt
e (1= ) (1—2)

ﬂ@ﬁP®DW—Q£

C)‘ 1
(i -———~—]
(= (er—2) (er—m?)

otherwise, which will be P(z) times a factor that goes to
zero not as strongly as z7'. This shows the way in which
the behavior of f(z) in infinity and the number of
nonCDD zeros are strictly correlated.”

If 7>1 in (105), but I1(f), considered as primary
quantity, vanishes so strongly in infinity that integrals
as in (B.4) converge, it might be possible to satisfy
(B.4) by choosing zeros of P(f) in the region where IT{¢)
is not small. In this case a subtracted form of f(z) is
defined by (B.1) and (B.3). If, however, 7>1 and II(¥)
is not 0(#!), no such possibility exists.

If 11(?) is considered given, f,(z) will only have CDD
zeros at freely chosen points, and the nonCDD zeros
determined by P(z) can be chosen real and positive.

75 This was recently shown for the absence of nonCDD zeros by
S. Aramaki, Progr. Theoret. Phys. 22, 485 (1959).
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A new proof is given of the dispersion relation for the /th partial wave amplitude when the potential is of
the Yukawa form or (by obvious extension) a suitable linear combination of such forms. The requisite
analyticity properties are obtained by rewriting the integral equation for the quantity fi(k,r), which is
related to the l-wave amplitude, as a Volterra equation on a finite interval in which the contribution from
the asymptotic part of the integral is absorbed into the inhomogeneous term. The Born series for the in-
homogeneous term is analytically continued termwise into the cut complex-wave-number plane and the
uniform convergence of the series is then established utilizing approximations which apply in the asymptotic
region. The properties of f;(k,7) then follow from a well-known theorem on Volterra equations.

I. INTRODUCTION

N a preceding paper! one of the authors presented a
derivation of the Mandelstam representation for
Yukawa potential scattering. In establishing the requi-
site analyticity character of the scattering amplitude
for infinite complex wave number, it was necessary to
proceed via an investigation of the behavior of the
partial wave projections. This investigation was con-
ducted rigorously only for the /=0 wave, but an
analysis for higher / has been given by Martin.??
While previously the knowledge of partial wave proper-
ties assumed an auxiliaty character, examination of the
field theoretic applications of the Mandelstam repre-
sentation* suggests that it be regarded as of primary
significance. In the present note we shall present a new
derivation of the Ith wave dispersion relation for
Yukawa potential scattering which provides consider-
able clarification of the mathematical difficulties in-
volved. In particular it will be shown that the required
analyticity properties depend only on the behavior of
solutions of the radial equations in regions where the
complexities associated with />0 disappear.

II. STATEMENT OF THE PROBLEM

. The radial Schrédinger equation for the /th partial
wave ¢:(k,7) corresponding to a potential ¥ (r) is

{@/dr+E—V(n—1(+1)/r}u(kr)=0, (1)

where A=2m=1 and % is the wave number. ¢;(&,)
obeys the boundary condition ¢;(k,0)=0, but may be
conveniently expressed in terms of a solution f;(k,r)
satisfying the asymptotic boundary condition

filkyr) — exp[—i(kr—3Ix)], r — . (2)

* Supported in part by the U. S. Atomic Energy Commission.

L A. Klein, J. Math. Phys. 1, 41 (1960).

2 A. Martin, Nuovo cimento 14 (403) 1959.

3 A. Martin, Nuovo cimento (to be published). Related work
has been carried out by R. E. Peierls (preprint).

In fact,
di(k,r) = (—iY/2ik) 2+1) i (— k)
X{fi(=R) filk,) = (=) fu(R) fu— A7)}, (3)
where '
b=l (2kr)! * ()= (I+m)! @
fl( )= rlilg (l’l) fl ,1’), ;m_’<l~.m)!m'-

One then obtains for the asymptotic form of ¢.(%,7)
T30 il
bi(kyr) — ;(ZH‘ 1) exp[[#, (k)] sin[ kr—3lm+58:(k) ], (5)

with
exp[ 2i6:(k)]= fi(k)/ fi(—&). (6)

In the present study we shall investigate the analytic
properties of f,(k) for the Yukawa potential

V(r)=\e*"/r. )

This will then enable us to write a dispersion relation
for the l-wave scattering amplitude

Aq(k)= (2ik)"[exp[2i8:(k)]—1]. (8)

III. ANALYTIC PROPERTIES OF fi(k)

In this section it will be proved that (A) fi(k) is an
analytic function of & in the entire £ plane excluding a
branch cut (denoted ©) which consists of the half-line
k=1u/2 — i,

Statement (A) as restricted to Imk<0 is well known
for a very wide class of potentials including the Yukawa
potential. In fact when V(r) satisfies

0

f 2V ()| dr< o,

0

fmr[V(r)]dr<oo,

it has been shown? that f;(k) is analytic in Imé<0 and

§R. Jost and R. Newton, Nuovo cimento 1, 590 (1955). (This
reference contains a plethora of detail about analyticity properties

¢G. Chew and S. Mandelstam, Phys. Rev. (to be published). in Im#<0 and also references to previous papers on the subject.)
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approaches unity as |k| — . The zeros of f,(k) are
the eigenvalues of (1) and may occur only for k= —iK
with K>0. Since neither =0 or k= —7% can be an
accumulation point of zeros of f;(k),5 the analyticity of
fi(k) in Imk <0 implies that the number of eigenvalues
is finite.

It is noteworthy that only the properties of f;('k) in
Imk<0 are needed to establish the Levinson theorem
and the Levitan-Gel’fand formalism® for the construc-
tion of potentials from phase shifts and bound—state
data. On the other hand, the derivation of a useful dis-
persion relation for 4;(k) will require an excursion into
the murkier reaches of the upper half-—#k plane, where
the assumption of Yukawa-like behavior of the poten-
tial becomes crucial.

It is convenient to introduce the function #4;(p)
related to the spherical Hankel function of the second
kind

hi(p)=—iphi® (p)= (L,))/ (20)'xa(p)e >,  (9a)
where k;(p) are polynomials of degree [ in p:
v (I-m)
kilp)= 2 ———(2ip)™; (9b)
m= l,l
and to define the fungtion
¥ (k,f)= [(Zkr) l/ (l’l)]eikrfl(k’r), (10)
so that
Fi(k,r) — fi(k) asr— 0
Fi(k,r) — xi(kr) as r — . (11)
Equations (1), (2), and (10) imply
S’z(k,r)=x¢(k7)+f GOk, r YV () F ik )dr', (12)
where
( 0: r<r
(“‘)l( 7 \1
— ) expl—ik(r'—7)
GO (k; 7t ) =< 2ik r’) pL ]
X[hz(kf)hz(‘—kf,) '
L —h(=k) (kY] ¥2r. (13)

Examination of (12) and (13) reveals that conver-
gence difficulties are encountered for Imk2 (u/2) be-
cause of the divergent factor exp[ — (u+2ik) (' —7)] as
|k| (r'—7) — 0, i.c., as | k|7’ — o« for finite 7. On the
other hand, the form of G, (k;r,') may be consider-
ably simplified for |k|7' — «. This suggests that we
rewrite (12) in the form

Fi(kyr) =8P (k)

R
+f GO (k; 1)V () Folky')dr',  (14)
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where

£ (k) =y (k)
+ f GO (k; 1YW () Falka)dr,  (15)
R

and R>r is at our disposal. Since (14) is a Volterra
equation on a finite interval, the Neumann series
solution obtained from (14) satisfies®

' 5z(k,f)( < [rg'a<xR f[(R)(k,f’) ‘
Xexp| max Gi®(k; 7 )V ()| (R~). (16)

Since G;@ (k;r,r") vanishes like ' —7 as #’— r and is
analytic in k for finite ||, it follows that | F,(k,r)| is
bounded in # for % in some finite region K and 0<7< R,
provided that |£® (kr)| is likewise bounded. If in
fact £® (k,r) were analytic in & for a closed region K
and 0<7< R, the Neumann series for (14) would be
term-wise analytic and uniformly convergent on the
contour of K thus implying the analyticity of F;(k,r)
for keK.

In Sec. IV we shall establish the following:

(B) Given |ko|>0, there exists C>>1 such that for
R=C/|ke|, &® (k) can be analytically continued
from the representation (15) on the real & axis into the
entire finite % plane outside the circle |k|=|ko| ex-
clusive of the cut Q.

The analytic continuations of &;(k,r) constructed for
various R say C/|ky| and C/|k| clearly coincide for
real k with |%| 2> max(| k|, | k1]), and hence throughout
the common region of analyticity. Thus for all £ with
[k] 2 | kol :

F1(R,0) = £,(C/1kob) (,0)

C/{lkol

[ s 0NV
0

— £,011H (k,0)
C/lkl

+ f GO (k; 04V () F(ky )y, (17)
0

Hence the behavior as {k| — « of the continuation of
F(k,0) constructed for a fixed R=C/|ky| may be
obtained from an analysis of

lim  §C/%(%,0).
JE) = o

In Sec. IV we shall prove
(€C)  lim [&CD(0)—1] =o(\]|Ink|/|E]).
Sabside B

¢ F. Riesz and B. Sz. Nagy, Functional Analysis (F. Ungar, New
York, 1956), p. 147.
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.Then from the second line of (17), the Born series for
F,(k,0) approaches its zeroeth term, i.e.,

lim |$.(50)—1]=0(|Ink|/|%]).  (18)
attside B
Thus from (9) and (11)
Ikllig)w FiR)=1+0(\|Ink|/|k]). (19)

outside ©

We have therefore reduced the proof of (A) to a proof
of (B) and (C) which we shall next undertake.
IV. PROOF OF STATEMENTS (B) AND (C)

We shall investigate the Born series for £,‘®) (k,r) ob-
tained by integration of (15) with (12). Each term
consists of factors of the form J&* G©(k; r/)V ()
Xy (kr")dy’ with R=r in all but the first factor. Note
that all variables of integration exceed R. After some
rearrangement we may write

f GO k; r," YV (¢ )i (kr')dr!
R

Kz[— k(d/dﬂ):l
xi(—kR)

= (PN ep(—u)
of (C) i
2 \R v

= p—2ik(R—1)

{Ao(k,r,R)

+)\xl(—kr)Al(p,k,R)}, (20)
where we have used
) ky(kr)e 7= k) (— kd/dp)e*,
and defined
Ao(k,7,R) =e*B-D[ (—)!/2ikR](r/R)"
X[ hi(kr)ly(— kR)— hy(— kr)lu(kR)],  (21)
and
(=1' pr Ry
Dk R=— f exp—ik(r'—R) (7)
X[hl(kR)hl(—kr’)—hl(—kR)lzl(kr')]
ar’
Xexp(—ur')—. (22)
r

The form (20) is especially convenient for analytic
continuation. It is shown in Appendix I that for real &,

A l(#rkyR) =

® e Bdg (u{ut2ik))?
{ } . (23)
s ala+2ik) lala+2:k)

One observes that A;(u,k,R) is analytic in % in the finite
k plane exclusive of the branch-cut . The first integral

FIVEL AND ABRAHAM KLEIN

in (20) is an entire function of % and is conveniently
rewritten

© 2y \"% A exp(—pur’)
Rf (~) ki(— k" y——-—dr’
R R r’
® ) 21 k e—aR
. —R f (—) x;(——aR)-—da. (24)
s \a ') a

Thus
f GO (R YV i (kr")dr
R

xi[—k(d/du)]
xi(—EkR)

=©\e2ik(B—T)

X f Ai(r,R bu,0)e=Bda, (25)
where g

A (T)R7k1u 7“)

=2(§)l [Ao(k,r,R):q(—kaR/y)R(S)l

Fxki(—kr) (u+-2ik)Y/ (ot 2ik) ’+1]. (26)

For |k|R>1, +Imk>0 we obtain from (21) the
useful approximation

A (r,R,k,u,a)

(u+2ik) ] )

*"(_) sl= k)[ 2; (at2ik) M1

The analytic continuation of (20) by means of
(23) must now be applied to each term of the Born
series for £ (k,r). The second Born approximation for
example is

Azexp[—— 2ik(R—r)]

K~ kd/dﬂl)ul =u
xi(—kR)

Xfw CXP("‘OZR)daI'#l(#rFZik)]l
v alat2i) L a(at2ik)

Xf Ay(7,R b, uta, B+a)ePRdB.  (28)

The series becomes
exp[— 2tk (R—r)]

B (k. r) =y (Rr)+
& B (kyr) =y (kr) iR

X Z AmH B (I"yk)’7R)7

n=(0

(29)
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where

Bl(n) ("’1k!77R)

= [ —k(@/dur) Joj =u 1

i=1

-1 -1
o WY @) (u 24 w)eifda;
y=1 =1
X

B J j
(Z av) +1 (2ik+Z av) +1
»=1

r=]

Xf Ai(r, R, u+> a,a+Y. a)eBda.  (30)
"

y=1 v=1

where
By=pt0;1(u1—u)

To establish the convergence of (29) for finite |#| it
suffices to prove convergence for the expression ob-
tained from (29) and (30) by the replacement

e [2 | I;nk]_]_*_l’

[a]=smallest integer >a. With this replacement it is
clear that since

i
Y o2 jp22Imk forall 72 N,

v=1
then
j—1 i—1
(wt Z @) (ut2ik+ 2 o)
=1 y=1
p ; >1. (31)
(2 @) (2ik+2 @)
ve=l r=1

Now we note that if R is chosen such that R is suffi-
ciently large, the principal contributions to the integrals
over a and a;(j=Ng ---,n) in (30) arise from o=y,
v=1, - -+, j. Furthermore, the principal contributions
to the derivative d/du arise from the exponential
exp(—uR). If we then choose R so large that these
approximations and in addition (27) are valid, we
obtain

| B¢2N0 (u,k,r,R)| < const [T

i=Nog

e +R e hE
X|— | {ra(—kr)———
(juR)(2ik+-jp) (n+1)uR
1 1
X(- + ) SC(NQ,[.L,k,f)
2k 2ik+ (nt1)u

n

X[n!(n—No)!T? (32)

— S
#'R
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where C(No,u,k,r) is bounded for finite r and finite |#]
exclusive of Q. From (32) we may conclude that for
finite % outside Q, |k| > |ko|, R=C/|ko| and C suffi-
ciently large that the remarks following (31) are appli-
cable, (29) converges to an analytic function. It must
be remarked also that C is to be chosen such that
x:(—kR) has no zeros for |k|R2>C. This is of course
possible for finite /. The proof of statement (B) is now
complete.

In Appendix II it is shown that the product of the
left side of (31) for j=1, 2, --- n is majorized by a*,
where a is a constant independent of % excluding an
arbitrarily small band enclosing @. Examination of the
series (29) for R=C/|k| then shows that C can be
chosen sufficiently large that the remarks following (31)
apply. One thus obtains:

N B (uk0.C/ 8]

n+1 * )\da]
<lerwol+1I | [ — —|
(E ) @it+E o)

y=1

(33)

where C;/(,C) is a bounded function of u and C. The
last factor is precisely that which is encountered for the
case =0 and is easily shown to satisfy the inequality

for large |k|:
w41 ® Ada; Aokt
< . (34
,I,Il f j R ( k| ) (39
(Z aV) (2lk+}: QV)

y=] y=1

Substitution of (33) and (34) into (29) yields

Aln|&|
‘kllirn g,<0/1k|>(k,0)=1—|-0( T ), (35)
e k

outside © !
which concludes the proof of Statements (C).

V. CONCLUSIONS

It has now been established that for a Yukawa
potential the l-wave scattering amplitude A,(k) is
analytic in the upper half & plane, except for a branch
cut on the imaginary k axis extending from k=1iu/2 to
k=1i» and a finite number of poles, also on the im-
aginary k axis, corresponding to the bound states. The
difference between 4,(k) and its first Born approxima-
tion 4, (k) may then be shown to have the branch
cut from k=iu to k=io. Application of Cauchy’s
theorem to A;(k)—A,;9 (k) in the variable s=#%? with
the contour of Fig. 1 produces the dispersion relation

A= 4,9 (sh)
1
=X Cuf (s=s1)+-
e
[ [,

* ImA ;(s'%)

; u«S,, (36)

TY_ » §—3
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F16. 1. Contour for Cauchy integral for 4;(s).

where
A0 (st) = (=N 25)QuL (w*+25)/25],
Qi(v) are Legendre functions of the second kind
Qo(») =2 In(»+1/»—1)
(+1)Qu1(v)= (2+1)pQu(») — 1011 (»)

+ and C; are residues at the bound state energies s;;.

APPENDIX I
(Im)(n)

aisr= [ () £ e

X{(=1)—=(=1)m exp[ —2ik(r'~7)])

WP

rar

If 2 Imk<y, successive integrations by parts yield
the relation

/

f — expl —2ik(r' —r)— yr’]—l

;T r
(=1 ®  erardy
(#+2ik)"'(—1)"'m!f L
. (at2ik)ymh
max{(n,m)
+ > (=D u+4-2ik)

A =14min(n,m)

X (A—1)le—#rym—2 l (1.2)

FIVEL AND ABRAHAM KLEIN

If we introduce (1.2) into (I.1) and simplify, we obtain
from those terms arising from the first term of (1.2)

©  g—ar ( LR
[ et £C)
X{ym(1

—y)HHyH(1-y),  (13)
where y= (—a/2ik). The summation in (I.3) is unity
for arbitrary y. The contributions to (I.1) from the
second term of (I1.2) yield a polynomial

2l 21—

2 2 Cor(u/2ik),

v=1 j=0

in which the coefficients are various sums of products of
binomial coefficients all of which are readily proven to
vanish. Thus

®x e-arda

.
A= Kt 2 )} Y

o alat2ik) lalat2ik)

APPENDIX II

The proof of the following inequality is required in
the text:

j—1 j=1
,u+ Z Qy ﬂ+21k+ Z Qay
n V= v=1
II( . : : ) <an, (IL1)
7=l J J
Y 243 a

y=1 y=1

for arbitrary % excluding @, where @ is a constant inde-
pendent of 2. For 2 Imk< u the left side is majorized by
unity (obtained by setting a;=p for all 5). Now suppose
2 Tmk2 u. The left side of (I1.1) can be written

wlut-2ik) |n1 (uti5) (ut-25k+¢5) ar2)
$n($at2ik) =1 ¢i(2k4¢5)
where
i'azé a;2 ju
Clearly ’
l#+s“ i <.
I
The maximum of
put 2k ;
2ik—+¢;
occurs for
g T A IO ReB ]

2
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and applying (a24-5%)1< |a|4-|8| one obtains
‘u-i— 2ik+{; ®
. <2 (1+ )< ®
| ik+e 4(Rek)

provided that |Rek| 2> ¢>0. The maxima of |u(u+2:k)/

¢a(En+2ik)| occur when ¢,=u and

3 Imk+{(Imk)2—8(Rek)2}
= ; .

n

In the first case the value is unity. In the second case
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suppose first that Imk< NV |Rek|, where N>>2v2. Then

pu(ut2ik)
Cn(Ent2iR)

On the other hand, if Imk2> N|Rek| then the second
maximum occurs at {,=22 Imk, where its value is
majorized by

u/2|Rek| < if |Rek|2e>0.

Thus taking e=max(N/2, 4(14+u/4|Rek|) (I1.1)
follows.

<~N/2.
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I. INTRODUCTION

HE classical equations of the processes of mathe-
matical physics can be put in the form

ut=T(u); (1)

where # is a vector function of a space vector p, re-
stricted to a region R, and the time #u=1(p,). The
operator T is in many cases a linear partial differential
operator, in some cases a linear integral operator, and if
we insist upon realism, a nonlinear operator. The steady-
state version is obtained by setting the vector #, equal
to zero.

Since equations of this type usually have an infinite
number of solutions, it is necessary to attach some
further restrictions in order to single out a particular
solution. To do this, we usually assign initial values,

u(p0)=2v(p), peR, (2)
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and boundary values

u(pt) =w(p),

for peB, the boundary of R.

Problems of this nature have two types of difficulties
associated, difficulties which are inseparably intertwined,
those of analytic character and those of computational
nature. Among the many methods which have been
proposed is the theory of semigroups. The guiding ideas
were first enunciated by Hadamard, and subsequently
were systematically pursued by Hille and Yosida; see
Hille and Phillips' for a thorough exposition and many
references. Classically, the semigroup concept has been
exploited in the time domain. Our aim is to show that
this basic method can be applied in a much wider area,
using other physical variables of significance as semi-
group variables.

If we use invariance principles in a systematic fashion,
we shall derive not only new analytic formulations of the
classical particle processes, those of transport theory,
radiative transfer, random walk, multiple scattering,
and diffusion theory, but, in addition, new compu-
tational algorithms which seem well fitted to the capa-
bilities of digital computers. Whereas the usual methods
reduce problems to the solution of systems of linear
equations, we shall try to reduce problems to the
iteration of nonlinear transformations.

Although we have analogous formulations of wave
processes,”™ we shall reserve for a second paper in this
series a detailed and extensive treatment of this part of
mathematical physics.

Our interest in the field of invariance principles
was aroused by the elegant and fundamental work
of Chandrasekhar in the theory of radiative transfer.®
His results, in turn, are generalizations of those of
Ambarzumian who seems to have been the first to have
consciously employed invariance principles in any sig-
nificant fashion.® Since then, in addition to our work,
reference to which will be made later in the paper,
there have been important contributions by Prei-
sendorfer,”® Ramakrishnan,® Redheffer,” and Ueno.!*-13

&)

1E. Hille and R. Phillips, Functional Analysis and Semi-Groups
(A;I;grican Mathematical Society, Providence, Rhode Island,
1957).
(lzgks.)Bellman and R. Kalaba, Proc. Natl. Acad. Sci. U. S. 44, 317

3R. Bellman and R. Kalaba, “Invariant imbedding and wave
propagation in stochastic media,” Proceeding International Con-
gress in EM Theory (Academic Press, Inc., London).

4 R. Bellman and R. Kalaba, J. Math. and Mech. 8, 683 (1959).

8S. Chandrasekhar, Radiative Tramsfer (Oxford University
Press, New York, 1950).

( 6 V.)A. Ambarzumian, Compt. rend. acad. sci. U.R.S.S. 38, 229
1943).

7R. Preisendorfer, Proc. Natl. Acad. Sci. U. S. 44, 320 (1958).

8 R. Preisendorfer, J. Math. and Mech. 6, 686 (1957).

? A. Ramakrishnan, in ‘“Probability and stochastic processes,”
in l%ﬂcyclopedia of Physics (Springer-Verlag, Berlin, 1959), vol.
111/2.

10 R, Redheffer, J. Rational Mech. and Anal. 3, 271 (1954).

11§, Ueno, Ann. astrophys. 21, 1 (1958).

12§, Ueno (to be published).

12 S, Ueno (to be published).
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In addition, there are some unpublished results due to
T. E. Harris.

Independently, functional equation techniques were
introduced into the theory of branching processes, in
particular, those arising in cosmic ray cascade theory
and biological mutation, by Bellman and Harris,'*'5 and
Janossy.'® Surveys of the many results obtained over
the last ten years may be found in Harris!"!® and
Ramakrishnan.®® Also in the theory of dynamic pro-
gramming,® in connection with the treatment of mini-
mization and maximization problems, we find a use of
invariance principles and functional equations which is
quite similar in spirit to what we shall find below in the
treatment of purely descriptive processes.

In place of beginning with an abstract formulation of
particle processes and an abstract presentation of the
principles of invariant imbedding, we shall start with a
study of a particular process, neutron transport and
multiplication. The difference in formulation between
the usual approach and that furnished by ““invariant
imbedding,” as we shall call our systematic application
of invariance principles, will readily be seen. Neverthe-
less, as we shall show, both are merely particular in-
stances of a general approach.

Having gone through a spectrum of transport proc-
esses, steady-state and time-dependent, energy-inde-
pendent and energy-dependent, one-dimensional and
multi-dimensional, unchanging medium and Stefan-
type, we shall abstract the basic ideas of invariant
imbedding.

Following this, we shall apply these techniques to the
study of random walk and multiple scattering, to the
study of radiative transfer and diffusion. Our treatment
of these fields will be much briefer since much of what
is done in the part devoted to neutron transport can
easily be transcribed and applied in these other areas.

In what follows, we shall pursue a purely formal path,
leaving aside all questions of existence, uniqueness, and
so on. What is interesting, however, is that our approach
enables us to handle many of these questions in a much
simpler and straightforward way than that furnished by
the conventional road.

Although we are in part motivated by a search for
feasible computational techniques, we shall actually
avoid any discussion of actual numerical techniques. In
subsequent papers we shall treat these matters in great
detail. Here we shall restrain ourselves to generalities.

14 R. Bellman and T. E. Harris, Ann. Math. 55, 280 (1952).

15 R, Bellman and T. E. Harris, Proc. Natl. Acad. Sci. U. S.
34, 601 (1948).

16 7,, Janossy, Cosmic Rays (Oxford University Press, New York,
1950). :

17T, E. Harris, Ergeb Math. (1961).

18T, E. Harris, “Some mathematical models for branching
processes,” Proc. Second Berkeley Symposium on Mathematical
Statistics and Probability, 1951, pp. 305-328.

¥ A. Ramakrishnan, “Stochastic processes,” Handbuch der
Physik.

2 R. Bellman, Dy Progr
Press, Princeton, New Jersey, 1957).

ing (Princeton University
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The equations of invariant imbedding are related to
the variational formulas of Hadamard type, expressing
the dependence of the Green’s function of a region upon
the dimensions of the region.?

Finally, let us note that no previous knowledge of the
equations of mathematical physics is required. All equa-
tions will be derived from first principles, directly from
the mathematical model of the physical process.

II. NEUTRON TRANSPORT AND MULTIPLICATION
1. Introduction

Let us begin our journey with the examination of a
number of intriguing mathematical problems which
arise in the study of various aspects of neutron transport
and multiplication. A consideration of some of the many
different hypotheses that can be made will give us an
opportunity to display the versatility of the theory of
invariant imbedding.

Our basic assumption is that a neutron is a point
particle which is completely specified at any time by its
direction of motion and its energy. These two properties
determine its state. As the neutron traverses the medium
within which the transport process takes place, it suffers
cértain changes of state (i.e., changes in energy and
direction), as a result of interactions with the medium
and with other neutrons. In addition, we have the rela-
tively new and very important phenomenon of fission.
Certain interactions can result in an increase in the
number of neutrons, the fission process.

The probabilities of these events are measured by
“cross sections’ or “mean free paths.” Occasionally, we
shall talk in deterministic terms, and occasionally in
stochastic terms, depending upon which is more con-
venient. The difference is more apparent than real, since
the use of expected values in a stochastic model leads to
a completely deterministic version based upon fluxes.

Within the framework of a mathematical model con-
structed along these lines, a model we shall make more
precise in the following section, we wish to explain and
predict the phenomenon of criticality, and to determine
the internal and external fluxes as functions of the
spatial dimensions, the time, and other parameters.
Problems of this nature are of great complexity from the
mathematical side, and thus of even greater fascination,
even when greatly simplified physical models are used.
‘When more realistic assumptions are made, the analytic
aspects become truly formidable, and the problem of
obtaining numerical results much more burdensome.

It is not to be expected that recondite scientific
questions will yield readily to any single approach.
Rather it is to be expected that with the aid of a battery
of methods, each of which chips away at some of the
obstacles in our path, we can eventually clear a road
which will take us some distance toward our goal.

The classical equations of transport theory can be

A R. Bellman and H. Osborn, J. Math. and Mech. 7, 81 (1958).
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effectively applied in a number of cases. Approximate
methods of various degrees of efficacy and associated
results may be found in the book by Davison.? Rigorous
discussion of these techniques can lead to quite complex
analysis; see for example the papers by Lehner and
Wing,#-28 Jorgens,”” and Pimbley.?®

A number of questions can be studied by means of the
mathematical theory of branching processes. The study
of age-independent processes was begun by Harris, 1718
and Everett and Ulam,® independently of each other.
Essentially it reduces to the study of the iteration of
power series, with probabilistic overtones. The theory of
age-dependent branching processes, based upon the
systematic usage of functional equations, was begun by
Bellman and Harris, /!5 and independently by Janossy.!®
Detailed expositions with many references will be found
in the monograph by Harris,'? the expository papers by
Harris,!'® and Ramakrishnan.!?

It is natural to construct simplified models in a situa-
tion characterized by severe mathematical difficulties
and by physical complexity as well. The usual hope is
that the exploration of these models will furnish valuable
experience and that the understanding of these more
transparent models will enable us to penetrate into the
more obscure versions. However, as mentioned above,
even apparently simple processes give rise to sophisti-
cated analysis.

Furthermore, as we shall discuss repeatedly below,
unless the problems are carefully formulated they can-
not be resolved in numerical terms in any straight-
forward fashion. Our objective in the pages that follow
is to formulate a variety of transport processes in a way
which will permit us to obtain numerical solutions with
the aid of digital computers. As is often the case in
mathematics and physics, a significant improvement in
computational technique requires a new conceptual and
analytic approach.

It turns out that in the process of fulfilling one of our
goals, numerical solution of problems, we obtain as
byproducts a host of interesting and elegant analytic re-
sults, together with powerful methods for establishing
existence and uniqueness theorems for the associated
functional equations and for the classical functional
equations of mathematical physics. Many of these equa-
tions are quite difficult to treat along conventional lines.

2 B. Davison, Neutron Transport Theory (Oxford University
Press, New York, 1957).

2 J. Lehner and G. M. Wing, Commum. Pure and Appl. Math.
8, 217 (1955).

2 T, Lehner and G. M. Wing, Duke Math. J. 23, 125 (1956).

26 G, M. Wing, “Transport theory and spectral problems,” Proc.
Symposium on Reactor Theory (American Mathematical Society,
Providence, Rhode Island) to be published. ‘

26 ], Lehner, Commum. Pure Appl. Math. 9, 487 (1956).

27 K. Jorgens, Commum. Pure Appl. Math. 11, 219 (1938).

28 G. Pimbley, J. Math. and Mech. 8, 837 (1959).

2 C. J. Everett and S. Ulam, Los Alamos Scientific Lab., de-
classified documents LADC-53¢ (AECD-2164), May 6, 1948;
LADC-533 (AECD-2165), June 11, 1948; and LA-707, October 28,
1048.
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Our principal tool will be the theory of invariant
imbedding. Rather than attempt to define precisely:
what turns out to be more a state of mind than anything
else, we shall first give a number of applications of the
methods. Subsequently, we shall try to distill the
essence of these.

2. Simple Neutron Transport and
Multiplication Process

Let us now describe a simple mathematical model of a
neutron transport process with fission. Subsequently, we
shall add a number of interesting features such as colli-
sion between neutrons, energy and time dependence,
and so on. For the immediate purpose of illustrating
both how the classical approach is made and how in-
variant imbedding techniques are used, there are great
advantages to using the simplest possible version pos-
sessing certain structural properties.

As noted in the foregoing, we take the neutron to be a
point particle, and we allow at the moment only one-
dimensional motion along a line, or part of a line. To
simplify matters still further, we assume that there is no
energy dependence. As this blithe, carefree neutron
moves along the line, it may suffer a collision with the
constituent elements of the line. Again to simplify the
algebra, we suppose that only fission collisions occur,
resulting in one neutron moving to the left and one to
the right. This is the only type of interaction we shall
allow between the neutron and the transport medium at
the moment. Furthermore, we shall suppose that there
are no neutron-neutron interactions.

To make this verbiage precise, let us consider a finite
interval [0,x] (the reason for this apparently loose
usage of x to designate an endpoint will be made clear
subsequently; at the present, let us merely state that it
is done with malice aforethought), a one-dimensional
rod, with the following properties:

a. When a neutron traverses an infinitesimal length 4,
in either direction, there is a probability eA+0(4)%
that fission will occur.

b. When fission occurs, two neutrons are pro-
duced, one going to the right and one to the left.
Each of these has the same properties as the origi-
nal neutron. (See Fig. 1.)

c. There is a probability 1—osA-o0(A) that no
interaction occurs in A, which means no change in
the direction of the neutron.

d. When a neutron leaves the rod, it cannot return
and it has no further effect upon the transport
process.

b 4 t

o] y y+A

»

FiG. 1. A rod of length x.

# The notation f{x)=o{g(x)] is used to mean limf(x)/g(x)=0,
where the sense of the limit is usually obvious from the context.
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It would not be difficult to include absorption effects
and collisions, which merely change direction, or to
allow R neutrons R#2 out of a collision. Since these
effects are treated subsequently in multiple scattering,
radiative transfer, and random walk, we shall omit them
here to keep the analytic details to an irreducible
minimum.

The quantity o is called the “macroscopic cross sec-
tion.” Occasionally, we shall write it as 1/A, where X is
called the “mean free path.” If the rod is homogeneous,
these quantities are constant, otherwise we write ()
and A(v) for the quantities associated with the interval
[y ’ y+A]' )

We shall begin by considering steady-state neutron
flux. The more general time-dependent case will be con-
sidered below. Let a unit flux of neutrons (that is, one
neutron per unit time) be incident upon the right end of
the rod, and let it be desired to determine the right and
left fluxes at any internal point v, as well as the fluxes
out at zero and x. We shall regularly refer to the latter
as transmitted and reflected fluxes, respectively.

Our first formulation will be the classical one, re-
sulting in simple versions of the linearized Boltzmann
equation.

Introduce the functions

uz(y)=the expected number of neutrons going to the
right at ¥ per unit time,
u1(y)=the expected number of neutrons going to the
left at y per unit time. (1)
To obtain differential equations for uz and wuz, we
apply simple conservation laws for the right- and left-
hand flows at y. These are input-output equations ex-
pressing the fact that what goes out is the sum of what
comes in and what is produced.
By virtue of our assumptions concerning the trans-
port and fission process and the elementary laws of
probability, we obtain the equations

ur()=ur(y—A)(1—cA)+[ur(y)+ur(y)Jrd+o(d),

ur(y)=ur(y+4)(1—cd)+[ur()+ur(y)Joa+o(d).
2

If we pass to the limit as A— 0, we obtain the
system of differential equations

%R'(y)=0'“L(y),

3
ui! () == oun(s). @
The boundary conditions are
ur(x)=1,
4
ur(0)=0. @

These express the fact that there is an incident flux
of unit strength at the point x, and the fact that there
is no incident flux at the point 0. Observe a property
which we shall repeatedly stress: The physical process
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Tronsmitted flux Refiected

prindahmg " flux
incident

-— flux

- Ll v
6 -4 x

F16. 2. The fluxes under consideration.

automatically leads to a two-point boundary value
problem when formulated in the foregoing way. The
reason for discussing this fact will be discussed in detail
later.

Finally, let us note that we can obtain the most
general second order Sturm-Liouville equation from the
foregoing process if we assume that right-hand motion
at v has a different mean-free path than left-hand
motion and that these mean free paths vary with .

3. Invariant Imbedding Approach—Metaphysical

We now wish to formulate the transport process
described in the foregoing section in different terms. OQur
approach will be based upon the theory of invariant
imbedding. What we wish to do is to imbed the particu-
lar process considered above within a family of processes
of similar nature. Although this appears to complicate
rather than simplify the problem, its justification lies in
the fact that there will exist simple relations between
various members of the family which can be utilized to
determine the characteristics of a particular member of
the family.

The fact that the structure, or anatomy, of a particu-
lar organism can be understood quite readily in terms
of the comparative anatomy of a phylum is well estab-
lished in the field of biology. In chemistry, the con-
struction of the Mendelieff-Moseley periodic table of the
elements was a decisive step forward. In mathematics,
the method of continuity is one of the basic devices of
analysis and geometry. It follows that in pursuing this
approach, we are invoking a factotum of science.

Consider the way in which an experimental physicist
might study neutron flux in a rod. Starting with a rod of
fixed length, he would measure reflected and trans-
mitted fluxes. Increasing or decreasing the length,
measurement would be made of the corresponding
quantities. The final data would consist of two curves,
one the reflected flux as a function of the length of the
rod, the other the transmitted flux. These would be
functions of x, the length of the rod.

Our aim here is to carry out the analytic equivalent
of this program. In order for these concepts to be
meaningful, we must find a way of relating the reflected
and transmitted flux for a rod of length x with the
corresponding fluxes for rods of different length. We
propose then to consider the set of processes obtained
by letting x assume any positive value. Our choice of the
symbol x obviously presages this development.

One advantage of this approach as far as reduction of
data is concerned is that it permits a direct comparison
of analytic results with experimental results. The ana-
Iytic and computational advantages will be discussed in
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extenso after we have supplied some analytic content to
this metaphysical discourse.

4. Invariant Imbedding Approach—Analytical
We begin by introducing the function

u(x)=the expected number of neutrons reflected
from [0,x] per unit time as a result of an
incident unit flux of neutrons per unit time
at x. (See Fig. 2.)

Let us take A to be an infinitesimal. As the incident
flux passes through the segment [x~—A, 7], some of the
neutrons cause fission and others pass through un-
affected to become incident upon [0, x—A7]. When a
fission occurs in A one fission neutron emerges at x, while
the other becomes a part of the incident flux at x—A.

Some of the neutrons reflected from [0, x—A] may
cause fission while passing through [x—A4,x]. The
products of this fission yield a contribution to the re-
flected flux at x and furnish another source of neutrons
incident upon [0, x—A].

Fortunately, although the physical process and mathe-
matical counterpart are exceedingly complex if account
of all fissions and reflections is taken, this intricate
bookkeeping is unnecessary if A is an infinitesimal. All
other events, apart from those taken account of above,
have a probability of occurrence of order A2 or higher.
Hence, they can be neglected in the derivation of the
differential equations for the expected flux u(x). If we
add up the various effects and their associated proba-
bilities, we obtain the equation

u(x)=cA[1+u(z—A)]
+(1—o8)[u(x—8){(1—0d)
+oA[14u(x—8) T} T+0(a). (2)

If we let A — 0, we derive the differential equation
u' (x)=o[14+u2(x)], =(0)=0. 3)

This first-order nonlinear differential equation is called
a Riccati equation. As we shall see, this type of quad-
ratically nonlinear equation is characteristic of the
equations derived by invariant imbedding techniques.
In contrast, the classical equations are linear. Since we
are describing the same process in different ways, there
must be relations between the analytic descriptions. We
shall obtain these later.
A further useful function is

v(x) = the expected transmitted flux per unit time
as a result of a unit flux per unit time inci-
dent at x.

The same reasoning as in the foregoing shows that v(x)
satisfies the equation

2(0)=1. (5)

Observe that u(x) satisfies a nonlinear differential
equation whose solution is determined by an initial con-

V' (%) =ou(x)v(x),
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dition as compared to the linear equations for #g(y) and
uz(y), determined by a two-point condition.

5. Connection between the Two Approaches

It is clear that by suitable choice of y, we can obtain
the functions #(x) and v(x) from the functions #z(y) and
#1(y). Thus, if we make the dependence upon « explicit,
we have '

ur(y)=ur(y; %),

wn(3) =11 (y; 2), W

and
u(x)=ur(x; %),

v(x)=u.(0; x).

Can we, however, derive the internal fluxes #z(y) and
vr(y), given the functions #(x) and »(x)?

To accomplish this, we combine both viewpoints.
Consider Fig. 3.

To obtain a relation between #z(y), #1(y), and #(y),
we consider a source of strength %1 (y) per unit time at y.
Then the steady-state relation is clearly

@

ur(y)=ur(y)u(y). 3)

ur(y)=v(x—y)+ulx—y)ur(y). €)
Hence, on solving for #g(y) and % .(y), we have
ur(y)=u(y)v(x—y)/[1—u@)ulz—y)],
ur(y)=v(x—y)/[1-u()ux—y)].

It follows that we can consider #(x) and »(x) as
fundamental functions from which all other functions
can be derived.

Similarly,

Q)

6. Semigroup Properties®

Let us now obtain general relations connecting #(x)
and v(x) with u(y), v(v) and u(x—y), v(x—v). The
differential equations of Sec. 4 are particular cases of
these relations.

Referring to Fig. 3 and tracing the multiply reflected
and transmitted fluxes, we see that

u(x)=u(x—y)+ov(x—y)u(y)v(x—y)
+o(x—y)uy)ulx—y)uy)vE—y)+---
=u(x—y)+{*(x—y)uly)/[1—u()ulx—y) ]}, (1)

and similarly

o)==y () [1-uu—y)] @)

Two values of particular interest are y=A and
y=x—A. The value y=x—A leads, as A— 0, to the

[ L —]
1 ] T 1
o] y X

Fi16. 3. Subdivision of a rod of length x.

3 For a definition and discussion of semigroups see footnote
reference 1.
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F16. 4. Locations of source and observer.

foregoing differential equations, and the value y=A to
Stokes’ relations,® a matter we shall discuss again later.

These results show that we can replace the solution of
differential equations by the iteration of simple trans-
formations. Consequently, these relations may be better
suited for computational purposes than the foregoing
differential equations.

7. A More General Imbedding

The foregoing results have essentially been conse-
quences of the observation that the internal fluxes #z(y)
and ur(y) are functions not only of ¥, the position at
which they are measured, but also of x, the length of the
rod. Hence, we should write, as already noted in Sec. 5,

ur(y)=ur(y; %),
ur(y)=ury;%).

Consider now the more general situation in which we
measure the fluxes at y resulting from a source at an
internal point z. (See Fig. 4.) The right-hand flux at y
should now be denoted by #z(x,y,5) and the left-hand
flux by #1(x,y,2). We are now at liberty to allow z, y,
and z to vary, either independently one at a time, or two
at a time, or all three together.

We see then that there are at least three different
ways in which we can imbed a particular process within
a family of processes. Two of these, variation of y and 2,
lead to linear equations with two-point boundary condi-
tions, while the third, variation with respect to #, leads
to a nonlinear equation with an initial value condition.
Each has certain analytic and computational advan-
tages. In any particular situation, we employ the
formulation which is most convenient.®

M

8. Energy Dependence (Multigroup Theory)3*

Let us now turn our attention to a more realistic
mathematical model in which we assume that a neutron
is characterized by an energy level as well as a direction.
In so doing, we have our choice of either a continuous
range of energies, or a finite set of discrete levels.

We have already discussed the continuous version.®
Let us concentrate upon the discrete version here, since
this is a case of greater importance from the compu-
tational point of view. We shall begin, as before, with
the conventional formulation.

2 F. Jenkins and H. White, Fundamentals of Optics (McGraw-
Hill Book Company, Inc., New York, 1950), pp. 199-201.

# R. Bellman, R. Kalaba, and G. M. Wing, J. Math. and Mech.
7, 741 (1958).

#R. Bellman and R. Kalaba, “Transport theory and invariant
imbedding,”” Proc. Symposium on Reactor Theory (American Math-
ematical Society, Providence, Rhode Island), to be published.
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The internal flux at y is now described by two vectors

#1(y) n(y)
)= |, W=,
un (9) on ()

where NV is the number of distinct energy levels or
groups, u;(y) represents the flux of neutrons in the ith
ie}'el to the right, and v;(y) the corresponding flux to the
ett.

Generalizing the foregoing model of a neutron trans-
port process, we suppose that various interactions such
as absorption, fission and nonfission collisions and so on,
}'esult in neutrons at one energy level being transformed
into neutrons at other levels.

We introduce four matrices

A=(aij), B=(bij), C=(ci;), D=(ds), (2)

where

a:;A=the expected incremental number of neutrons
at the sth level in the right-hand flux at
y+4, per neutron at the jth level in the
right-hand flux at y, 3)

to within terms of order magnitude 0(4). Similarly,
bi;A denotes the incremental contribution from left-
hand to right-hand flux, c;;A from right-hand flux to
left-hand flux, and d;;A from left-hand flux to left-hand
flux. It should be noted that in the completely isotropic
case the matrices 4, B, C, D are closely related.

The usual conservation considerations lead to the
equations

ui(y+A)—u;(y)=A i aiui(y)

=i

AT bun(5)+0(0),

i=1

4)
N
1:(y)—v:(y+A)=A4 % ciui(y)

i=1

AT dii(y)+0(8),

=1
for i=1,2, .-+, N,
Letting £ — 0, we obtain the following vector-matrix
equations:
du/dy=Au-- B, .
—(dv/dy)=Cu~+Dv, ®)

for 0<y<w.

As before, let us suppose that no neutrons are incident
at 0, and there is a flux of intensity &; per unit time of
neutrons in the 7th level at . We thus obtain the two-
point boundary conditions

#(0)=0, ov(x)=5. 6)
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If the rod is inhomogeneous, the matrices 4, B, C, and
D will depend upon y. Although there is no difference as
far as the functional equation technique of invariant
imbedding is concerned between the treatment of the
homogeneous and inhomogeneous, the classical treat-
ment is simplified by the assumption of constancy of
A, B, C, and D. The discussion below applies equally to
constant or variable matrices.

Let W(y) be the matrix solution of

aw [A B

dy L—c -p

]W, W(0)=1. (7)
dy

To solve (3) subject to (6), we suppose that »(0) has the
as yet unknown value ¢. Then, the solution of (5) can

be written
S} o

Wu(y) le(y)]
Wm(y) Wez(y) ’

where each W,; is an VXN matrix. If we use the
terminal condition »(x)=b, we obtain the equation

Was(x)c=b, (10)

Write

we-| ©)

which determines the unknown vector ¢.

9. Computational Aspects

The determination of ¢ in (8.10) requires the solution
of a system of NV linear equations in N unknowns. In
addition, we must determine the N XN matrix W using
the linear differential equation of footnote reference 7.
Fortunately, since the equation is linear, we can de-
termine W () one column at a time. Hence, instead of
the simultaneous determination of N2 functions, we can
perform N determinations of N functions.

10. Reflection and Transmission Matrices

Let us now consider the foregoing process using in-
variant imbedding techniques. To that end we introduce
the matrix R(x)=[r;;(x)], where

r:;(x) =the expected flux of neutrons in state 1 re-
flected per unit time from a rod of length x
resulting from an incident flux at « of unit
intensity per unit time in state j. 1)

The same type of reasoning employed in the one-
dimensional case yields the matrix equation

R(x+A)=BA+ (I+AA)R(x)(I+DA)
+R(x)CR(x)A+0(4). (2)

In the limit this yields the Riccati matrix equation
R'(x)=B+AR+RD+RCR, 3
with the initial condition R(0)=0.
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In a similar fashion, if we introduce the transmission
matrix T'(x)=[1:;(x)], where

1;j(x)=the expected flux of neutrons in state i
transmitted per unit time through a rod of
length x resulting from an incident flux at

x of unit intensity per unit time in state j. (4)
Then, we obtain as before
T'(x)=T(D+CR). (5)

11. Computational Aspects

The determination of R(x), by way of (10.3), requires
the simultaneous integration of N? nonlinear equations
with the initial value R(0)=0. This is a far more com-
plicated operation than that of solving N sets of N
linear equations, but, in recompense, it avoids the task
of solving NV simultaneous linear equations.

Furthermore, let us note that once R(x) has been
determined, we have resolved the transport process,
determination of internal and external fluxes, for a set of
rods of increasing length. On the other hand, the con-
ventional method based upon linear equations yields the

-solution for one length at a time.

12. Criticality

Let us turn to a discussion of one of the most im-
portant phenomena associated with neutron transport
and multiplication, namely criticality. As the length of
the rod increases, the intensity of internal and emergent
flux increases and becomes infinite as a certain critical
length is attained. '

To determine the critical length for the energy-
independent case, let us begin with the linear equations
of Sec. 2. If we eliminate % (y), we obtain the equation

¢)]
We take o constant for simplicity. The general solution
is

2

On using the two-point boundary conditions of (2.5),
we readily obtain the equation

ur” (y)=our' (y)=—c*ur(y).

ur(y)=c; siney+c, cosoy.

3

We see then that ur(y) and u.(y) are infinite for 0 < y<x
when x=m/2¢. This is the critical length for the simple
neutron multiplication process we have set up.

On turning to the equation for the reflected flux
obtained via invariant imbedding, we have

w(x)=o(1+u?), u(0)=0,

ur(v)=sinaey/cosox.

@
®

Once ag_ain, we see that x=n/2v is the critical length.
As po'mted out by McGarvey, we can use (6.1) or (6.2)
to obtain the critical length. In place of asking for the

whence
u(x)=tanex.
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value of x which makes #(x) infinite, it is sufficient to
ask for the value of ¥ which makes #(x)=1, and then
double x.

13, Criticality—Multigroup Case

It is in the determination of critical length in the
energy-dependent case that the classical formulation
encounters real trouble. To find the value of x which
yields infinite flux, we must solve the determinantal
equation

det[ Wz () ]=0. 0

Let us note, once and for all, that when we speak of
the critical value, we mean the smallest value of x which
yields an infinite flux. From the physical point of view,
the problem of determining expected fluxes is meaning-
less when the length of the rod exceeds the critical value.
The higher values of x which yield infinite values are
connected with the higher characteristic values as-
sociated with the two-point boundary-value problem.
They do not appear to have any physical significance,
although this is always a dangerous statement.

On the other hand, when we go over to a more
sophisticated discussion concerning probabilities of
fluxes of various intensity, and probability of fission,
then it becomes quite significant to consider rods of
greater than critical length. There are a number of
interesting mathematical problems in this area which
have been considered in detail by McGarvey,* and
Mullikin and Snow.*® We shall discuss them briefly
below.

Returning to the equation in (1}, we see that if V, the
number of groups, is of any size, say 10 or 20, the
problem is not trifling. If N =250 or 100, we cannot con-
sider a solution along the foregoing lines to be satis-
factory, for a number of reasons which are familiar to
numerical analysts.

The invariant imbedding technique requires the inte-
gration of N? simultaneous differential equations which
are quadratically nonlinear. This integration is pursued
until some element in the matrix R(x) becomes infinite.
To begin with, let us discuss the dimensional aspects. A
computation of this type for N=10 or 20 is completely
routine for modern digital computers, and one of this
nature for ¥ =750 is large, but feasible. For the machines
that will be operational within a few years, values of ¥
such as 100 or 200 will be routine.

Now let us turn to the integration of the differential
equations until a singularity occurs. Clearly, this is not a
routine operation if accuracy is desired. There are
several things that we can do. First of all, we can ob-
serve that as x approaches xq, the critical value, we have
an asymptotic behavior of the form

(2)

rii(®)~sii/ (x—20),

%D, McGarvey (to be published).
% T. Mullikin and R. Snow (unpublished).
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where 5,20, and some s;;>0. Hence

1/rij(x)~ (x—20) /545, (3)

when s;;>0. This linear behavior can be used to predict
the value of xy with great accuracy. Furthermore, the
fact that there are N? functions 7;;(x) will enable us to
determine x, with even greater accuracy.

Secondly, we can use McGarvey’s observation, pointed
out in the section on criticality for the simple energy-
independent case. In place of finding the first value of
# for which R(x) is singular, we can ask for the first
value of x for which the matrix R(x) has its largest
characteristic root equal to one. If this value is x;, the
critical value will be 2x;.

Since the matrix R(x) is a positive matrix, or at least,
nonnegative, we know that there will be one root of
largest absolute value which is real.?” By slight pertur-
bation of the transition matrices 4, B, C, and D we can
actually ensure that all the entries in R(x) are positive,
which means that the root with largest absolute value
will actually be positive.

There are now available a number of simple and
efficient techniques for determining this root, the Perron
root, of a positive matrix. Furthermore, since clearly
R(x) has monotonically increasing elements, we can use
various interpolation methods to locate the position of
this root very accurately. A large number of questions
in the theory of branching processes can be reduced to
the problem of determining the largest characteristic
roots of positive operators; see Bellman-Harris* and
Birkhoff.® :

In any case, this method seems far superior to that of
finding the roots of a determinantal equation of high
degree. It would seem that invariant imbedding tech-
niques have a distinct advantage as far as the determi-
nation of critical parameters is concerned.

14. Extrapolation over Multigroups

One way of determining the critical length with great
accuracy is based upon the use of a large number of
energy levels. It is reasonable to suspect that closer and
closer values to the true value will be derived as we use
finer and finer subdivisions of the energy range. Conse-
quently, we can use the following extrapolation method.
Solve the problem for N =10, for N =20, N=230, and so
on, until we reach the limits of the computer. If we use
the successive values obtained for the critical length, we
can extrapolate to V=, and thereby obtain a more
precise value.

Here is where an analysis of the precise asymptotic
form as V — o will be very valuable. With the aid of an
analytic representation of the critical length as a func-
tion of N, we can use superior extrapolation procedures.

3 R. Bellman, Introduction to Matrix Analysis (McGraw-Hill
Book Company, Inc., New York, 1960), Chap. 16.

3 R. Bellman and J. M. Danskin, The RAND Corporation,
Rep. R-256, Chap. 5, March 1, 1954.

% . Birkhoff, Proc. Nat. Acad. Sci. U. S. 45, 567 (1959).
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Of course, it is seldom possible to obtain cross sections
and other physical parameters, as continuous functions.
Hence the limiting case N — o is often of greater
mathematical interest than it is of physical importance.

15. Multidimensional Transport Theory—
Slab Case

Leaving the physically cramped but mathematically
comfortable confines of the one-dimensional, let us
begin our investigation of the more significant multi-
dimensional processes by considering a neutron trans-
port process taking place in an infinite slab contained
between the planes y=0 and y=x in three space. As
usual, surrounding the slab is a vacuum which means
that a neutron leaving the slab at either boundary never
returns. (See Fig. 5.)

A classical formulation of this problem leads in the
isotropic case to the equation

] ko p!
+I-‘—+Uf=? f f(x;#’7t)dl",7 (1)
-1

y=x

y=0

F16. 5. The incident and reflected fluxes.

where ¢ is the constant neutron velocity, o is the con-
stant collision cross section, and k is the average number
of neutrons emerging from a collision. As usual, u is the
cosine of the angle between the direction of motion of
the particle and the positive ¥ direction, and f(y,u,?) is
the density of neutrons at ¥ traveling in direction x at
time .

There are boundary conditions at y=0 and y=ux,
arising from the fact that particles may not reenter the
slab once they have emerged. In the steady-state situa-
tion, of the type we have so far been considering, (1)
takes the form

ko ! . )
o= / S

A rigorous treatment of Egs. (1) and (2) requires deep
analysis.?.2

Let us consider this problem using invariant im-
bedding techniques. To simplify our initial presentation,
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let us return to neutrons which are independent of
energy, but do, however, possess directions of motion.
Assume, as indicated in Fig. 5 that there is a plane-
parallel flux in direction # per unit area per unit
time incident at x, and that we are given the various
probabilities of absorption, scattering and fission colli-
sions, and the resultant angular distribution of neutrons.

The type of reasoning used in the previous sections
enables us to derive a functional equation of the form

Iu/dx=T(u), 3)
where T is a quadratic operation, for the function

u(x,0,¢)=the reflected flux per unit area on tke
surface in the y direction per unit time
as a result of a unit incident flux per unit
area on the surface per unit time.% (4)

There is no need for us to go into the details for three
reasons. In the first place, we shall derive similar
equations below for cylindrical and spherical geometries.
The second reason we shall discuss immediately below.
Finally, we shall discuss this problem from another
physical viewpoint in Sec. V.

y

y=x-A4A x

Fi1G. 6. A stratified slab.

16. Equivalence of One-Dimensional Energy-
Dependent Cast and Angular-Dependent,
Energy-Independent Slab Case

What is important is the observation that the trans-
port process for a one-dimensional rod with energy-
dependence is abstractly equivalent to the process for
the slab with discrete angular dependence, but no energy
dependence.

In both cases, we have a finite number of “states” and
mechanisms for transforming a neutron from one state
to another. Another advantage of this formulation lies
in the fact that the inclusion of energy dependence in
the slab merely increases the number of states, without
at all changing the mathematical formulation.

17. Cylindrical Regions

The infinite slab is stratified by considering it to be
composed of a series of strata of which the stratum be-
tween y=x and y=x—A is typical (Fig. 6).

In analogous fashion, we can stratify other regions

“ Throughout this paper we measure fluxes with respect to the
geometrical areas on which they impinge, rather than with respect
to a plane normal to the beam. For a discussion, see Sec. 59.
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F16. 7. A problem with cylindrical geometry.

with various types of symmetries. Consider, for our
first example of this, an infinite cylindrical region, whose
cross section ¢(r) is dependent only upon the radial
coordinate 7. Let us suppose that neutron production is
energy independent and isotropic, with % neutrons
emerging after each collision.

Given an incident flux of one neutron per unit area per
unit time on the surface at angles (6,¢), we wish to
determine the reflected flux ¥ (ru,0,u’,¢"). As usual,
u=cos? (Fig. 7).

The imbedding is now performed by considering the
cylindrical region to be composed of a sequence of
infinitesimal cylindrical shells. In cross section, they
appear as in Fig. 8. (For ingoing particles, 6 is measured
with respect to the inward normal.) On referring to
Figs. 7 and 8, and adding up effects as before, we obtain
the functional equation*

dy qo(r)cscd qo(r)csco o~ 1
0 0

dr 4 4oy
a(r) I’ cscp  cscd’
+ ]¢(r,ﬂ,¢,ﬂ',¢')
sl u '
qgo(r) r~ 1 csce’’
+ f dg"” f Y (rubn 9" )—
dr Jy, 0 u

L 1
. [ 1+f d¢”’f d“’/,lp (r)y,’,)¢,l,)#,)¢,) b
0 0

v(Oueu 0)=0. (1)

To compute dy/dr, we must note that u itself is really
a function of 7, and the same is true of x’. Upon taking

A

F16. 8. Stratification of
a cylinder.

2 R. Bellman, R. Kalaba, and G. M. Wing, J. Math. and Mech.
8, 575 (1959).
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F16. 9. A process taking place in a sphere.
this into consideration, we find
@ W HWl—u l-p”
= T T .
dr Or op wr Oy Wwr

)

We shall discuss the corresponding result for spherical
regions, and then discuss the computational significance
of these results.

18. Spherical Regions

As our next example, consider a sphere composed of
transport material whose cross section is dependent upon
the radial coordinate p alone. As indicated in the
following figure, we introduce an angular coordinate a,
cosa=1, and suppose that we have a conical flux of
neutrons, with direction », incident uniformly over the
surface.of the sphere, one neutron per unit area per unit
time. We wish to determine the reflected flux in direction
v, ¥(o,v,7"). (See Fig. 9.)

The usual analysis yields the equation®

agbil-—v? 6¢¢1-—v’2 ﬂ

1

o 61)' vp Y
a(p) golp) !
“EE T [y an
4y 20 Jy
1 1 q v 1//(p,v,'v”)
e W+ [ T
v v 2 0 7

1
x { 2 [ o )i } 1)
0

19. Critical Mass

The critical reader may seriously question the value
of the results obtained in the two previous sections,
since incident fluxes of the type we have employed are
seldom found. This is certainly a valid criticism.

There is, however, one quite important case in which
we can profitably use this type of flux, and, indeed,
whatever type of flux is most convenient. This is the
determination of critical mass. It is possible to convince
oneself that whatever radius is critical for one type of
flux will be critical for any other type of steady-state

flux.
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20. More General Fluxes

The same persevering reader may also ask why we
have not used invariance principles directly for more
general fluxes. This can be done. What has held us back
has been dimensionality difficulties. Consider, for ex-
ample, a two-dimensional slab in which we consider an
incident flux of unit intensity per unit time at an angle
6 at a particular point, say 2=0. (See Fig. 10.) We then
introduce the flux, #(0,y,2,x), as the reflected flux at
angle Y per unit time at the point a distance z from the
point of incidence. We then obtain the same type of
equation for # as before, with the difference that % now
depends upon one additional variable 2. This increase in
dimensionality introduces formidable computational
difficulties due to the enormously increased memory
requirements.

From the analytic point of view, there is no difficuity
in considering realistic fluxes. From the computational
point of view, these more realistic problems require new
techniques and bigger and faster machines. For a pos-
sible line of approach, see Bellman and Dreyfus.®

21. Volterra vs Fredholm Equations

The equations we have obtained in the foregoing
sections using invariant imbedding techniques have in-
variably been nonlinear, as compared to the linear
equations of classical transport theory. Considering the
f